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Why Study Regularization in Machine Learning?
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A SUPERVISED LEARNING EXAMPLE

m Observe data X; € R%, i = 1,...,n with labels Y; € R%

m Want to predict labels on previously unseen and unlabeled
data

m Example: X; a medical scan and Y; a corresponding diagnosis
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The Model Class:
m Want to learn functional relationship Y; ~ f(X;)
m Must choose class F of proposed functions f
m Modern ML uses tremendously complex model classes
m GPT-3: 175 billion trainable parameters’

'Brown, T. B. et al Language Models are Few-Shot Learners (2020)
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FEED-FORWARD NEURAL NETWORKS

A Simpler Model Class:

m Fix L > 2, rewrite dr,, = dy and d, = d,, and pick d, for each
£=1,..L

m Picko : R — R and write gy, ,(z) = o(W;x + v,), with
W, € Rdexde-1 and v, € R4e
m Neural network:

f(x) = V{/L+1 ) O'I/VL,VL Or0 O'WI,VI(X)

m Alternates affine transformations with (usually) non-linear
function o
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FEED-FORWARD NEURAL NETWORKS

Symbol Terminology

L Network Depth

dy Input Dimension/No. of Features
dr Output Dimension

o Activation Function

W,v, Hidden Layer

Wi Output Layer

dy, ¢ =1,...,L | Hidden Layer Widths
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Why Choose Neural Networks as a Model Class?

m Neural networks with a non-polynomial activation function
are dense in the space of continuous functions with respect
to compact convergence.?

2Leshno, M. et al Multilayer Feedforward Networks with a Nonpolynomial
Activation Function can Approximate any Function (1993)



FEED-FORWARD NEURAL NETWORKS

Why Choose Neural Networks as a Model Class?

m Neural networks with a non-polynomial activation function
are dense in the space of continuous functions with respect
to compact convergence.

m Can adapt to arbitrarily complex patterns in the data
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THE THREE INGREDIENTS OF REGRESSION ||

The Empirical Risk:
m Let £;(f) measure fit on i" data point, for example

Li(f) = IY: = fXI3

m IfY; = f(X;) for each i, then f minimizes the empirical risk
1 n
Lah) = 2 2 L)
i=1

m With (hypothetical) access to the whole data distribution y,
can compute the population risk

Lu(f) = Jﬁs(f) du(s)
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THE PROBLEM OF GENERALIZATION

How do we Estimate the Optimal Parameters?

m Ideal model would satisfy £(f) = 0, but we cannot access the
population risk

m Can only hope to compute empirical risk minimizer

fe argminfn(f)
feF

m To achieve a robust estimate, must both minimize £,, (data fit)
and the gap £,, — £ (generalization error)
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THE PROBLEM OF GENERALIZATION

Exercise
Consider the linear regression loss

B Y — XBI3

with X € R™4 having linearly independent columns and d > n.
Are there any “bad” solutions to this problem?



THE PROBLEM OF GENERALIZATION

Potential Problems:

m The empirical risk £,, may feature many local and global
minima, not all of which generalize well

m Must be careful when computing empirical risk minimizer
fe argminfean(f)
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The Training Algorithm:

m Typically, cannot directly compute empirical risk minimizer,

especially difficult if # is a class of neural networks

m Approximate iteratively: pick initial guesses W,(0) and v,(0),

then use gradient descent recursion

[ Wik +1) ]

Wk +1)
vi(k+1)

| vik+1) |

W)

Wi a(K)
Vi '(k)

| VL'(k) J

_ak.

[ ViraoLn(f) ]

VWLH(k)AE n(f)
Vv1 (k)'cn(f)

| Ve, 0ln(f) |
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IMPLICIT REGULARIZATION

What does this mean for us?
m Despite all the potential problems, gradient descent works
well in practice
m Example: GD in over-parametrized linear regression yields
norm-minimal solutions
m Regularization implicit to the choices made during training
may explain how models generalize




ALGORITHMIC RANDOMNESS

How does Randomness Enter the Picture?




ALGORITHMIC RANDOMNESS

How does Randomness Enter the Picture?
m Stochastic gradient descent:

Wk + 1) = Wy(k) — oy - Vg0 (), €=1,...,L

with i; ~ Unif(1, ..., n)




ALGORITHMIC RANDOMNESS

How does Randomness Enter the Picture?
m Stochastic gradient descent:

%(k +1) = W/g(k) = O - VWg(k)'cik(f)’ £=1,..,L

with i ~ Unif(1, ..., n)
m Speeds up gradient computation




ALGORITHMIC RANDOMNESS

How does Randomness Enter the Picture?
m Stochastic gradient descent:

Wk + 1) = Wp(k) — &ty - VipqoLi, () €=1,...,L

with iy ~ Unif(1, ..., n)
m Speeds up gradient computation
m Can help escape sub-optimal minima?

2|bayashi, H. et al Why does SGD Prefer Flat Minima? (2023)
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ALGORITHMIC RANDOMNESS
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ALGORITHMIC RANDOMNESS

General Stochastic Approximation:
m SGD is an instance of the general algorithm

Wy(k +1) = Wy(k) — ag - Vip,qoLi(f),  €=1,...,L
with £, ~ £ a sample from a random function f — £(f)

m In general, iterates converge to distribution concentrated
near critical points of

f e E[L(f)]

with step-sizes «; determining the variance?

2Robbins, H. et al A Stochastic Approximation Method (1951)




ALGORITHMIC RANDOMNESS

General Stochastic Approximation:
m SGD is an instance of the general algorithm

W,(k + 1) = W,(k) — ay - VWg(k)’Ek(f)’ £=1,..,L

with £, ~ £ a sample from a random function f — £(f)

m In general, iterates converge to distribution concentrated
near critical points of

f = E[L(f)]

with step-sizes a; determining the variance
m What if we choose noise such that

E[VZ(N)] # VEa(f)
and why would we do so?
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NOISY ALGORITHMIC REGULARIZATION METHODS

Example: Dropout
m During training neurons may correlate with each other and
lose expressiveness

m To help, may randomly omit connections from the network
during training?

2Srivastava, N. et al Dropout: A Simple Way to Prevent Neural Networks from
Overfitting (2014)
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NOISY ALGORITHMIC REGULARIZATION METHODS

Example: Dropout
m During training neurons may correlate with each other and
lose expressiveness
m To help, may randomly omit connections from the network
during training
m Randomized loss £(f) = £,(f) with f having randomly
deleted connections
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Example: Stochastic Sharpness-Aware Minimization:

m Flat regions of the empirical risk are thought to generalize
well?

2Hochreiter, S. et al Simplifying Neural Nets by Discovering Flat Minima (1994)
Foret, P. et al Sharpness-Aware Minimization for Efficiently Improving
Generalization (2021)
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Example: Stochastic Sharpness-Aware Minimization:

m Flat regions of the empirical risk are thought to generalize
well

m Flatness of a function f : R¢ - R at a point w can be
quantified via

W = Ezovio, 1 f(W + &) = f(w)

m To jointly optimize loss and flatness, must find

W € arg min {f(w) + [E§~N(0,772-Id)[f(w + 5)] — f(w)}

weRd




NOISY ALGORITHMIC REGULARIZATION METHODS

Example: Stochastic Sharpness-Aware Minimization:

m Flat regions of the empirical risk are thought to generalize
well

m Flatness of a function f : R¢ — R at a point w can be
quantified via

W = Eg o, f(W+ )] — f(w)

m To jointly optimize loss and flatness, must find

W € arg min {[E§~N(O,772-Id)[f(w + f)]}

weRd

m Implies stochastic approximation algorithm
Wiy = Wi — - V(Wi + &)
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WHAT DOES ALGORITHMIC RANDOMNESS DO?

m Recall the general stochastic approximation algorithm, which
can be rewritten into

W,(k + 1)
= Wy(k) — ai. - E[ Vi, 10 Lk(f) | prev. iteration]

+ o - ([E[VWN{)fk(f) | prev. iteration| — ng(k)fk(f))

m Separates algorithm into deterministic part (expected
gradient) and stochastic fluctuations around expectation

m Change in expected landscape may induce regularization
m Challenging analysis, due to many interlinked components



Warm-Up: Ridge Regression
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m Linear regression loss:
B~ [IY — XBII3

m If X'X invertible, unique minimizer § = (X'X)~1x'Y
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m Linear regression loss:
B = Y - XBI3

m If X'X invertible, unique minimizer g = (X'X)~1xtY
m What happens if X'X is close to singular?
m Suppose X = Z‘;:l e/ -ujv} (SVD), then
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A CLASSICAL EXAMPLE OF REGULARIZATION

m Linear regression loss:
B~ [IY — XBII3

m If X'X invertible, unique minimizer g = (X'X)"1xty
m What happens if X*X is close to singular?
m Suppose X = Z u;v; (SVD), then
N (&1 d 9
Cov(g) = (JZ=1 = viu )COV Y) (Z:: EJ )

m Variance diverges as g; — 0
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What can be done?
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A CLASSICAL EXAMPLE OF REGULARIZATION

What can be done?
m Replace X'X with X'X + 1 - I;, 1 to make it “less singular”, so

d
~ — G;
=(XX+1-1) Xty =Y —— .vaul|Y
Ba=( a) (szlO}z” JJ)
m Working backwards, we find that

b= arg;nin{nv — XBI3+2- 1813}




How to Build Theory from the Ground Up



A SIMPLE NON-CONVEX PROBLEM

m Consider the linear regression loss

1
B 5 - IY - XBI3




A SIMPLE NON-CONVEX PROBLEM

m A deep version:

1 2
(W1, W) = 5" ”Y—X(Wz ®W1)H2

(w, ® w; denotes the element-wise product)
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A SIMPLE NON-CONVEX PROBLEM

m Diagonal linear network:
1 2
(Wi, W) = 5 - [Y = X(w; O wi)|

m Suppose Y = Xw, and X is an orthogonal matrix, then the
loss turns into

1
(W, wWp) = 5 W, — w, © wy |3




A SIMPLE NON-CONVEX PROBLEM

Exercise

How many critical points does the function

1
(W, Wp) = 3" W, —w, ®W1||%

have, and can you describe them?




A SIMPLE NON-CONVEX PROBLEM

3
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STOCHASTIC SHARPNESS-AWARE MINIMIZATION

m Recall that flat regions are thought to generalize well, so want
to minimize

1 2
(W1, W) = o [E51,§2~N(0,7721d)[||w* — (W + &) O (wy + fl)”z]

m Use stochastic approximation algorithm

wi(k+1)| _ [wy(k)
wyk+1)|  [wy(k)

o [Tt - w00+ £0) © (w1 + §1(k))H;
Vario W = (W) + £200) © (w0 + £:00)|




STOCHASTIC SHARPNESS-AWARE MINIMIZATION

m Recall that flat regions are thought to generalize well, so want
to minimize

1 2
(W1, W) = 2 [E§1,52~N(0,7721d)[||w* - (W + &) O (wy + fl)”z]

m Use stochastic approximation algorithm

wik+1)| _ [wy(k)
wy(k+ 1) [wy(k)

%k le(k)Hw* — (wy(k) + &,(k)) © (w (k) + fl(k))”z
sz(k)”w* - (Wz(k) + fz(k)) ) (Wl(k) + gl(k))Hz

m Induced ¢,-regularizer

1 n?
(w1, W) > = - [we =W, @ Wil + 2 (w3 + [wal3)




DIAGONAL LINEAR NETWORKS WITH €,-PENALTY

Exercise

How many critical points does the function

1 7?
(W1, wo) = = - [We =W, O wy 3 + - - (I[wi 3 + w2 3)

have, and can you describe them?




DIAGONAL LINEAR NETWORKS WITH €,-PENALTY

Theorem

Each critical point of the ¢,-penalized loss has the following form:
pick S c {1,...,d} and set

Wyl = [w I‘I“W*’i'_nz’ ifi € Sand [w, | > 7
Lil — 2,il —

0, otherwise

with sign(wy ;) - sign(w, ;) = sign(w, ;).
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DIAGONAL LINEAR NETWORKS WITH €,-PENALTY

m Induced ¢,-regularizer

2

1 n
(W1, W) = = - [We =W, @ wy [} + - - (I[wy 3 + w2 3)




DIAGONAL LINEAR NETWORKS WITH €,-PENALTY

m Induced ¢,-regularizer
1 2 772 2 2
(W, Wy) = 3" [w, —w, © w2 + 3 w2 + w213

m Want to study the ¢,-penalized iterates
wi(k+1)
w,(k + 1)

_ [Wl(k)] " A [le(k)”W* —w;(k) ®W1(k)”%:|
Wy (k)| T 2| VoW — wia(k) © wi (k)3

oyt [le(k)||W1(k)||§]
2 V(o lw2(R)13



DIAGONAL LINEAR NETWORKS WITH €,-PENALTY

m Induced ¢,-regularizer

1 n?
(W, wWy) = 5 W, —w, © w3 + = (||W1||§ + ||W2||%)

m Want to study the ¢,-penalized iterates

wy(k + 1)
w,(k + 1)
e
)
i




DIAGONAL LINEAR NETWORKS WITH €,-PENALTY

m Induced ¢,-regularizer

1 2 772 2 2
(W1, W3) = = - [ W = wo @ Wy} + - - (Iwall3 + [wal)
m Want to study the ¢,-penalized iterates
wi(k+1)
w,(k + 1)

w (k) w,(k)
=(1-on?)- [w;(k)] + ay - (W* —w,(k) © Wl(k)) ’ [wj(k)
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GRADIENT FLOWS

m Consider the sum
k
S =89 — ), ap- Vs, f(9p)
€=0

m If sup, @, — 0, converges to continuous-time function
(t € Rxo)

t
8 =9 —J Ve, f(8) ds
0

m Trajectory t — & solves the system of ODEs

d

&% = =V, f(8)

with boundary condition 8, (gradient flow of f)



THE £€,-PENALIZED FLOW

m In our model, the gradient flow with ¢,-penalty takes form

d [W1(t)] __1 [le(t)”W* — w, (1) ®W1(t)||%]
dt 2 [Vw,ollwe —wy () © wi (D)3

w;(1)
_ 77_2 ) [le(t)”Wl(t)”%]
2 | Vw,oollw2(013
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m In our model, the gradient flow with £,-penalty takes form

d [Wl(t) w,(1) 2y [Wl(t)]

at | w,(0) =(W*‘W2(”®W1(”)'[wl(t) A
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m In our model, the gradient flow with ¢,-penalty takes form

2| wy(0) wi(®)
. [W;(t) =l el [wf(t)] a [wi(t)]

Exercise

As t — oo, the gradient flow converges to a critical point of the
¢,-penalized loss. We know that all critical points satisfy
w1 O W =WwW; O W)y, SO

lim (w1(1) © wi(1) ~ wa(t) © W (1)) = 0,

but how can you characterize this convergence?
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For everyt > 0,

wi(t) © wy(1) = wa(1) © wy(0)
= et (w(0) © W1(0) —~ W (0) © wy(0)).
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