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A Supervised Learning Example

Observe data 𝐗𝑖 ∈ ℝ𝑑𝑥, 𝑖 = 1,… , 𝑛 with labels 𝐘𝑖 ∈ ℝ𝑑𝑦
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A Supervised Learning Example

Observe data 𝐗𝑖 ∈ ℝ𝑑𝑥, 𝑖 = 1,… , 𝑛 with labels 𝐘𝑖 ∈ ℝ𝑑𝑦

Want to predict labels on previously unseen and unlabeled
data
Example: 𝐗𝑖 a medical scan and 𝐘𝑖 a corresponding diagnosis
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The Three Ingredients of Regression I

The Model Class:
Want to learn functional relationship 𝐘𝑖 ≈ 𝑓(𝐗𝑖)
Must choose class ℱ of proposed functions 𝑓

3 17



The Three Ingredients of Regression I

The Model Class:
Want to learn functional relationship 𝐘𝑖 ≈ 𝑓(𝐗𝑖)
Must choose class ℱ of proposed functions 𝑓
Modern ML uses tremendously complex model classes

3 17



The Three Ingredients of Regression I

The Model Class:
Want to learn functional relationship 𝐘𝑖 ≈ 𝑓(𝐗𝑖)
Must choose class ℱ of proposed functions 𝑓
Modern ML uses tremendously complex model classes
GPT-3: 175 billion trainable parameters1

1Brown, T. B. et al Language Models are Few-Shot Learners (2020)
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Feed-Forward Neural Networks

A Simpler Model Class:
Fix 𝐿 ≥ 2, rewrite 𝑑𝐿+1 = 𝑑𝑥 and 𝑑0 = 𝑑𝑦, and pick 𝑑ℓ for each
ℓ = 1,…𝐿
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A Simpler Model Class:
Fix 𝐿 ≥ 2, rewrite 𝑑𝐿+1 = 𝑑𝑥 and 𝑑0 = 𝑑𝑦, and pick 𝑑ℓ for each
ℓ = 1,…𝐿
Pick 𝜎 ∶ ℝ → ℝ and write 𝜎𝑊ℓ,𝐯ℓ(𝐳) = 𝜎(𝑊ℓ𝐱 + 𝐯ℓ), with
𝑊ℓ ∈ ℝ𝑑ℓ×𝑑ℓ−1 and 𝐯ℓ ∈ ℝ𝑑ℓ

Neural network:

𝑓(𝐱) = 𝑊𝐿+1 ∘ 𝜎𝑊𝐿,𝐯𝐿 ∘ ⋯ ∘ 𝜎𝑊1,𝐯1(𝐱)
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A Simpler Model Class:
Fix 𝐿 ≥ 2, rewrite 𝑑𝐿+1 = 𝑑𝑥 and 𝑑0 = 𝑑𝑦, and pick 𝑑ℓ for each
ℓ = 1,…𝐿
Pick 𝜎 ∶ ℝ → ℝ and write 𝜎𝑊ℓ,𝐯ℓ(𝐳) = 𝜎(𝑊ℓ𝐱 + 𝐯ℓ), with
𝑊ℓ ∈ ℝ𝑑ℓ×𝑑ℓ−1 and 𝐯ℓ ∈ ℝ𝑑ℓ

Neural network:

𝑓(𝐱) = 𝑊𝐿+1 ∘ 𝜎𝑊𝐿,𝐯𝐿 ∘ ⋯ ∘ 𝜎𝑊1,𝐯1(𝐱)

Alternates affine transformations with (usually) non-linear
function 𝜎
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Feed-Forward Neural Networks

𝑥1 𝑥2 𝑥3

𝑦1 𝑦2
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Feed-Forward Neural Networks

Symbol Terminology
𝐿 Network Depth
𝑑0 Input Dimension/No. of Features
𝑑𝐿+1 Output Dimension
𝜎 Activation Function
𝜎𝑊ℓ,𝐯ℓ Hidden Layer
𝑊𝐿+1 Output Layer
𝑑ℓ, ℓ = 1,… , 𝐿 Hidden Layer Widths
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Feed-Forward Neural Networks

Why Choose Neural Networks as a Model Class?
Neural networks with a non-polynomial activation function
are dense in the space of continuous functions with respect
to compact convergence.
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Feed-Forward Neural Networks

Why Choose Neural Networks as a Model Class?
Neural networks with a non-polynomial activation function
are dense in the space of continuous functions with respect
to compact convergence.2

2Leshno, M. et al Multilayer Feedforward Networks with a Nonpolynomial
Activation Function can Approximate any Function (1993)
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Feed-Forward Neural Networks

Why Choose Neural Networks as a Model Class?
Neural networks with a non-polynomial activation function
are dense in the space of continuous functions with respect
to compact convergence.
Can adapt to arbitrarily complex patterns in the data
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The Three Ingredients of Regression II

The Empirical Risk:
To pick the optimal 𝑓 in our class, need to quantify predictive
performance
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The Empirical Risk:
To pick the optimal 𝑓 in our class, need to quantify predictive
performance
Let ℒ𝑖(𝑓) measure fit on 𝑖th data point, for example
ℒ𝑖(𝑓) = ‖𝐘𝑖 − 𝑓(𝐗𝑖)‖22
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The Three Ingredients of Regression II

The Empirical Risk:
Let ℒ𝑖(𝑓) measure fit on 𝑖th data point, for example
ℒ𝑖(𝑓) = ‖𝐘𝑖 − 𝑓(𝐗𝑖)‖22
If 𝐘𝑖 = 𝑓(𝐗𝑖) for each 𝑖, then 𝑓 minimizes the empirical risk

ℒ̂𝑛(𝑓) =
1
𝑛 ⋅

𝑛
∑
𝑖=1

ℒ𝑖(𝑓)
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The Three Ingredients of Regression II

The Empirical Risk:
Let ℒ𝑖(𝑓) measure fit on 𝑖th data point, for example
ℒ𝑖(𝑓) = ‖𝐘𝑖 − 𝑓(𝐗𝑖)‖22
If 𝐘𝑖 = 𝑓(𝐗𝑖) for each 𝑖, then 𝑓 minimizes the empirical risk

ℒ̂𝑛(𝑓) =
1
𝑛 ⋅

𝑛
∑
𝑖=1

ℒ𝑖(𝑓)

With (hypothetical) access to the whole data distribution 𝜇,
can compute the population risk

ℒ𝜇(𝑓) = ⌠
⌡
ℒ𝑠(𝑓) d𝜇(𝑠)
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The Problem of Generalization

How do we Estimate the Optimal Parameters?
Ideal model would satisfy ℒ(𝑓) = 0, but we cannot access the
population risk
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The Problem of Generalization

How do we Estimate the Optimal Parameters?
Ideal model would satisfy ℒ(𝑓) = 0, but we cannot access the
population risk
Can only hope to compute empirical risk minimizer

𝑓 ∈ argmin
𝑓∈ℱ

ℒ̂𝑛(𝑓)

To achieve a robust estimate, must both minimize ℒ̂𝑛 (data fit)
and the gap ℒ̂𝑛 − ℒ (generalization error)
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The Problem of Generalization

Potential Problems:
The empirical risk ℒ̂𝑛 may feature many local and global
minima, not all of which generalize well

6 17



The Problem of Generalization

Exercise
Consider the linear regression loss

𝜷 ↦ ‖𝐘 − 𝑋𝜷‖22

with 𝑋 ∈ ℝ𝑛×𝑑 having linearly independent columns and 𝑑 ≫ 𝑛.
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The Problem of Generalization

Exercise
Consider the linear regression loss

𝜷 ↦ ‖𝐘 − 𝑋𝜷‖22

with 𝑋 ∈ ℝ𝑛×𝑑 having linearly independent columns and 𝑑 ≫ 𝑛.
Are there any “bad” solutions to this problem?
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The Problem of Generalization

Potential Problems:
The empirical risk ℒ̂𝑛 may feature many local and global
minima, not all of which generalize well
Must be careful when computing empirical risk minimizer
𝑓 ∈ argmin𝑓∈ℱ ℒ̂𝑛(𝑓)
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The Three Ingredients of Regression III

The Training Algorithm:
Typically, cannot directly compute empirical risk minimizer,
especially difficult if ℱ is a class of neural networks
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The Three Ingredients of Regression III

The Training Algorithm:
Typically, cannot directly compute empirical risk minimizer,
especially difficult if ℱ is a class of neural networks
Approximate iteratively: pick initial guesses𝑊ℓ(0) and 𝐯ℓ(0),
then use gradient descent recursion

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑊1(𝑘 + 1)
⋮

𝑊𝐿+1(𝑘 + 1)
𝐯1(𝑘 + 1)

⋮
𝐯𝐿(𝑘 + 1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑊1(𝑘)
⋮

𝑊𝐿+1(𝑘)
𝐯1(𝑘)
⋮

𝐯𝐿(𝑘)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 𝛼𝑘 ⋅

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∇𝑊1(𝑘)ℒ̂𝑛(𝑓)
⋮

∇𝑊𝐿+1(𝑘)ℒ̂𝑛(𝑓)
∇𝐯1(𝑘)ℒ̂𝑛(𝑓)

⋮
∇𝐯𝐿(𝑘)ℒ̂𝑛(𝑓)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Implicit Regularization

What does this mean for us?
Despite all the potential problems, gradient descent works
well in practice
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Implicit Regularization

What does this mean for us?
Despite all the potential problems, gradient descent works
well in practice
Example: GD in over-parametrized linear regression yields
norm-minimal solutions
Regularization implicit to the choices made during training
may explain how models generalize
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Algorithmic Randomness

How does Randomness Enter the Picture?
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How does Randomness Enter the Picture?
Stochastic gradient descent:

𝑊ℓ(𝑘 + 1) = 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ ∇𝑊ℓ(𝑘)ℒ𝑖𝑘(𝑓), ℓ = 1,… , 𝐿

with 𝑖𝑘 ∼ Unif(1,… , 𝑛)
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Algorithmic Randomness

How does Randomness Enter the Picture?
Stochastic gradient descent:

𝑊ℓ(𝑘 + 1) = 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ ∇𝑊ℓ(𝑘)ℒ𝑖𝑘(𝑓), ℓ = 1,… , 𝐿

with 𝑖𝑘 ∼ Unif(1,… , 𝑛)
Speeds up gradient computation
Can help escape sub-optimal minima2

2Ibayashi, H. et al Why does SGD Prefer Flat Minima? (2023)
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Algorithmic Randomness

9 17



Algorithmic Randomness

General Stochastic Approximation:
SGD is an instance of the general algorithm

𝑊ℓ(𝑘 + 1) = 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ ∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓), ℓ = 1,… , 𝐿

with ℒ̃𝑘 ∼ ℒ̃ a sample from a random function 𝑓 ↦ ℒ̃(𝑓)
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Algorithmic Randomness

General Stochastic Approximation:
SGD is an instance of the general algorithm

𝑊ℓ(𝑘 + 1) = 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ ∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓), ℓ = 1,… , 𝐿

with ℒ̃𝑘 ∼ ℒ̃ a sample from a random function 𝑓 ↦ ℒ̃(𝑓)
In general, iterates converge to distribution concentrated
near critical points of

𝑓 ↦ 𝔼[ℒ̃(𝑓)]

with step-sizes 𝛼𝑘 determining the variance2

2Robbins, H. et al A Stochastic Approximation Method (1951)
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Algorithmic Randomness

General Stochastic Approximation:
SGD is an instance of the general algorithm

𝑊ℓ(𝑘 + 1) = 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ ∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓), ℓ = 1,… , 𝐿

with ℒ̃𝑘 ∼ ℒ̃ a sample from a random function 𝑓 ↦ ℒ̃(𝑓)
In general, iterates converge to distribution concentrated
near critical points of

𝑓 ↦ 𝔼[ℒ̃(𝑓)]

with step-sizes 𝛼𝑘 determining the variance
What if we choose noise such that

𝔼[∇ℒ̃(𝑓)] ≠ ∇ℒ̂𝑛(𝑓)

and why would we do so?
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Noisy Algorithmic Regularization Methods

Example: Dropout
During training neurons may correlate with each other and
lose expressiveness
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Noisy Algorithmic Regularization Methods

Example: Dropout
During training neurons may correlate with each other and
lose expressiveness
To help, may randomly omit connections from the network
during training2

2Srivastava, N. et al Dropout: A Simple Way to Prevent Neural Networks from
Overfitting (2014)
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Noisy Algorithmic Regularization Methods

Example: Dropout
During training neurons may correlate with each other and
lose expressiveness
To help, may randomly omit connections from the network
during training
Randomized loss ℒ̃(𝑓) = ℒ̂𝑛(𝑓) with 𝑓 having randomly
deleted connections
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Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:
Flat regions of the empirical risk are thought to generalize
well
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Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:
Flat regions of the empirical risk are thought to generalize
well2

2Hochreiter, S. et al Simplifying Neural Nets by Discovering Flat Minima (1994)
Foret, P. et al Sharpness-Aware Minimization for Efficiently Improving
Generalization (2021)
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Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:
Flat regions of the empirical risk are thought to generalize
well
Flatness of a function 𝑓 ∶ ℝ𝑑 → ℝ at a point 𝐰 can be
quantified via

𝐰 ↦ 𝔼𝝃∼𝒩(0,𝐼𝑑)[𝑓(𝐰 + 𝝃)] − 𝑓(𝐰)
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Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:
Flat regions of the empirical risk are thought to generalize
well
Flatness of a function 𝑓 ∶ ℝ𝑑 → ℝ at a point 𝐰 can be
quantified via

𝐰 ↦ 𝔼𝝃∼𝒩(0,𝐼𝑑)[𝑓(𝐰 + 𝝃)] − 𝑓(𝐰)

To jointly optimize loss and flatness, must find

𝐰 ∈ argmin
𝐰∈ℝ𝑑

{𝔼𝝃∼𝒩(0,𝜂2⋅𝐼𝑑)[𝑓(𝐰 + 𝝃)]}
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Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:
Flat regions of the empirical risk are thought to generalize
well
Flatness of a function 𝑓 ∶ ℝ𝑑 → ℝ at a point 𝐰 can be
quantified via

𝐰 ↦ 𝔼𝝃∼𝒩(0,𝐼𝑑)[𝑓(𝐰 + 𝝃)] − 𝑓(𝐰)

To jointly optimize loss and flatness, must find

𝐰 ∈ argmin
𝐰∈ℝ𝑑

{𝑓(𝐰) + 𝔼𝝃∼𝒩(0,𝜂2⋅𝐼𝑑)[𝑓(𝐰 + 𝝃)] − 𝑓(𝐰)}
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Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:
Flat regions of the empirical risk are thought to generalize
well
Flatness of a function 𝑓 ∶ ℝ𝑑 → ℝ at a point 𝐰 can be
quantified via

𝐰 ↦ 𝔼𝝃∼𝒩(0,𝐼𝑑)[𝑓(𝐰 + 𝝃)] − 𝑓(𝐰)

To jointly optimize loss and flatness, must find

𝐰 ∈ argmin
𝐰∈ℝ𝑑

{𝔼𝝃∼𝒩(0,𝜂2⋅𝐼𝑑)[𝑓(𝐰 + 𝝃)]}

Implies stochastic approximation algorithm

𝐰𝑘+1 = 𝐰𝑘 − 𝛼𝑘 ⋅ ∇𝑓(𝐰𝑘 + 𝝃𝑘)
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What does Algorithmic Randomness do?

Recall the general stochastic approximation algorithm

𝑊ℓ(𝑘 + 1) = 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ ∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓), ℓ = 1,… , 𝐿
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What does Algorithmic Randomness do?

Recall the general stochastic approximation algorithm, which
can be rewritten into

𝑊ℓ(𝑘 + 1)
= 𝑊ℓ(𝑘) − 𝛼𝑘 ⋅ 𝔼[∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓) ∣ prev. iteration]

+ 𝛼𝑘 ⋅ (𝔼[∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓) ∣ prev. iteration] − ∇𝑊ℓ(𝑘)ℒ̃𝑘(𝑓))

Separates algorithm into deterministic part (expected
gradient) and stochastic fluctuations around expectation
Change in expected landscape may induce regularization
Challenging analysis, due to many interlinked components
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1 Why Study Regularization in Machine Learning?

2 Warm-Up: Ridge Regression

3 How to Build Theory from the Ground Up
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A Classical Example of Regularization

Linear regression loss:

𝜷 ↦ 1
𝑛 ⋅

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝐗t𝑖𝜷)
2
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A Classical Example of Regularization

Linear regression loss:

𝜷 ↦ 1
𝑛 ⋅

𝑛
∑
𝑖=1

(𝑌𝑖 − 𝐗t𝑖𝜷)
2 ∝ ‖𝐘 − 𝑋𝜷‖22

with

𝐘 = [
𝑌1
⋮
𝑌𝑛
] and 𝑋 = [

𝐗t1
⋮
𝐗t𝑛
]
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If 𝑋 t𝑋 invertible, unique minimizer ̂𝜷 = (𝑋 t𝑋)−1𝑋 t𝐘
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A Classical Example of Regularization
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A Classical Example of Regularization

Linear regression loss:

𝜷 ↦ ‖𝐘 − 𝑋𝜷‖22

If 𝑋 t𝑋 invertible, unique minimizer ̂𝜷 = (𝑋 t𝑋)−1𝑋 t𝐘
What happens if 𝑋 t𝑋 is close to singular?
Suppose 𝑋 = ∑𝑑

𝑗=1 𝜎𝑗 ⋅ 𝐮𝑗𝐯
t
𝑗 (SVD), then

Cov( ̂𝜷) = (
𝑑
∑
𝑗=1

1
𝜎𝑗
⋅ 𝐯𝑗𝐮t𝑗)Cov(𝐘) (

𝑑
∑
𝑗=1

1
𝜎𝑗
⋅ 𝐮𝑗𝐯t𝑗)

Variance diverges as 𝜎𝑗 → 0

12 17



A Classical Example of Regularization

What can be done?
Replace 𝑋 t𝑋 with 𝑋 t𝑋 + 𝜆 ⋅ 𝐼𝑑, 𝜆 to make it “less singular”, so

̂𝜷𝜆 = (𝑋 t𝑋 + 𝜆 ⋅ 𝐼𝑑)
−1𝑋 t𝐘
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A Classical Example of Regularization

What can be done?
Replace 𝑋 t𝑋 with 𝑋 t𝑋 + 𝜆 ⋅ 𝐼𝑑, 𝜆 to make it “less singular”, so

̂𝜷𝜆 = (𝑋 t𝑋 + 𝜆 ⋅ 𝐼𝑑)
−1𝑋 t𝐘 = (

𝑑
∑
𝑗=1

𝜎𝑗
𝜎2𝑗 + 𝜆

⋅ 𝐯𝑗𝐮t𝑗)𝐘

Working backwards, we find that

̂𝜷𝜆 = argmin
𝜷

{‖𝐘 − 𝑋𝜷‖22 + 𝜆 ⋅ ‖𝜷‖22}
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2 Warm-Up: Ridge Regression

3 How to Build Theory from the Ground Up
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A Simple Non-Convex Problem

Consider the linear regression loss

𝜷 ↦ 1
2 ⋅ ‖𝐘 − 𝑋𝜷‖22

13 17



A Simple Non-Convex Problem

A deep version:

(𝐰1,𝐰2) ↦
1
2 ⋅

‖
‖𝐘 − 𝑋(𝐰2 ⊙𝐰1)‖‖

2

2

(𝐰2 ⊙𝐰1 denotes the element-wise product)
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A Simple Non-Convex Problem

Diagonal linear network:

(𝐰1,𝐰2) ↦
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2
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A Simple Non-Convex Problem

Diagonal linear network:

(𝐰1,𝐰2) ↦
1
2 ⋅

‖
‖𝐘 − 𝑋(𝐰2 ⊙𝐰1)‖‖

2

2

Suppose 𝐘 = 𝑋𝐰∗ and 𝑋 is an orthogonal matrix, then the
loss turns into

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22
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A Simple Non-Convex Problem

Exercise
How many critical points does the function

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22

have, and can you describe them?
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A Simple Non-Convex Problem
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Stochastic Sharpness-Aware Minimization

Recall that flat regions are thought to generalize well, so want
to minimize

(𝐰1,𝐰2) ↦
1
2 ⋅ 𝔼𝝃1,𝝃2∼𝒩(0,𝜂2𝐼𝑑)[

‖
‖𝐰∗ − (𝐰2 + 𝝃2) ⊙ (𝐰1 + 𝝃1)‖‖

2

2
]
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2
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Use stochastic approximation algorithm

[𝐰1(𝑘 + 1)
𝐰2(𝑘 + 1)] = [𝐰1(𝑘)

𝐰2(𝑘)
]

−
𝛼𝑘
2 ⋅

⎡
⎢
⎢
⎣

∇𝐰1(𝑘)
‖
‖𝐰∗ − (𝐰2(𝑘) + 𝝃2(𝑘)) ⊙ (𝐰1(𝑘) + 𝝃1(𝑘))‖‖

2

2
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2

2

⎤
⎥
⎥
⎦
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‖𝐰∗ − (𝐰2(𝑘) + 𝝃2(𝑘)) ⊙ (𝐰1(𝑘) + 𝝃1(𝑘))‖‖

2

2

∇𝐰2(𝑘)
‖
‖𝐰∗ − (𝐰2(𝑘) + 𝝃2(𝑘)) ⊙ (𝐰1(𝑘) + 𝝃1(𝑘))‖‖

2

2

⎤
⎥
⎥
⎦

Induced ℓ2-regularizer

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22 +

𝜂2

2 ⋅ (‖𝐰1‖22 + ‖𝐰2‖22)
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Diagonal Linear Networks with ℓ2-Penalty

Exercise
How many critical points does the function

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22 +

𝜂2

2 ⋅ (‖𝐰1‖22 + ‖𝐰2‖22)

have, and can you describe them?
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Diagonal Linear Networks with ℓ2-Penalty

Theorem
Each critical point of the ℓ2-penalized loss has the following form:
pick 𝑆 ⊂ {1,… , 𝑑} and set

|𝐰1,𝑖| = |𝐰2,𝑖| = {√
|𝐰∗,𝑖| − 𝜂2, if 𝑖 ∈ 𝑆 and |𝐰∗,𝑖| ≥ 𝜂2

0, otherwise

with sign(𝐰1,𝑖) ⋅ sign(𝐰2,𝑖) = sign(𝐰∗,𝑖).
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Diagonal Linear Networks with ℓ2-Penalty

Induced ℓ2-regularizer

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22 +

𝜂2

2 ⋅ (‖𝐰1‖22 + ‖𝐰2‖22)
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Diagonal Linear Networks with ℓ2-Penalty

Induced ℓ2-regularizer

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22 +

𝜂2

2 ⋅ (‖𝐰1‖22 + ‖𝐰2‖22)

Want to study the ℓ2-penalized iterates

[𝐰1(𝑘 + 1)
𝐰2(𝑘 + 1)]

= [𝐰1(𝑘)
𝐰2(𝑘)

] +
𝛼𝑘
2 ⋅ [∇𝐰1(𝑘)‖𝐰∗ −𝐰2(𝑘) ⊙𝐰1(𝑘)‖22

∇𝐰2(𝑘)‖𝐰∗ −𝐰2(𝑘) ⊙𝐰1(𝑘)‖22
]

−
𝛼𝑘𝜂2

2 ⋅ [∇𝐰1(𝑘)‖𝐰1(𝑘)‖22
∇𝐰2(𝑘)‖𝐰2(𝑘)‖22

]
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2 ⋅ (‖𝐰1‖22 + ‖𝐰2‖22)

Want to study the ℓ2-penalized iterates

[𝐰1(𝑘 + 1)
𝐰2(𝑘 + 1)]

= [𝐰1(𝑘)
𝐰2(𝑘)

] − 𝛼𝑘 ⋅ (𝐰∗ −𝐰2(𝑘) ⊙𝐰1(𝑘)) ⋅ [
𝐰2(𝑘)
𝐰1(𝑘)

]

− 𝛼𝑘𝜂2 ⋅ [
𝐰1(𝑘)
𝐰2(𝑘)

]
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Diagonal Linear Networks with ℓ2-Penalty

Induced ℓ2-regularizer

(𝐰1,𝐰2) ↦
1
2 ⋅ ‖𝐰∗ −𝐰2 ⊙𝐰1‖22 +

𝜂2

2 ⋅ (‖𝐰1‖22 + ‖𝐰2‖22)

Want to study the ℓ2-penalized iterates

[𝐰1(𝑘 + 1)
𝐰2(𝑘 + 1)]

= (1 − 𝛼𝑘𝜂2) ⋅ [
𝐰1(𝑘)
𝐰2(𝑘)

] + 𝛼𝑘 ⋅ (𝐰∗ −𝐰2(𝑘) ⊙𝐰1(𝑘)) ⋅ [
𝐰2(𝑘)
𝐰1(𝑘)

]
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Gradient Flows

Gradient descent can be hard to study, due to lack of
analytical techniques, so let’s simplify!
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Gradient Flows

Gradient descent can be hard to study, due to lack of
analytical techniques, so let’s simplify!
Consider the sum

𝝑𝑘+1 − 𝝑0 = −
𝑘
∑
ℓ=0

𝛼ℓ ⋅ ∇𝝑ℓ𝑓(𝝑ℓ)
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Gradient Flows

Consider the sum

𝝑𝑘+1 = 𝝑0 −
𝑘
∑
ℓ=0

𝛼ℓ ⋅ ∇𝝑ℓ𝑓(𝝑ℓ)

If supℓ 𝛼ℓ → 0, converges to continuous-time function
(𝑡 ∈ ℝ≥0)

𝝑𝑡 = 𝝑0 −⌠
⌡

𝑡

0

∇𝝑𝑠𝑓(𝝑𝑠) d𝑠
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Gradient Flows

Consider the sum

𝝑𝑘+1 = 𝝑0 −
𝑘
∑
ℓ=0

𝛼ℓ ⋅ ∇𝝑ℓ𝑓(𝝑ℓ)

If supℓ 𝛼ℓ → 0, converges to continuous-time function
(𝑡 ∈ ℝ≥0)

𝝑𝑡 = 𝝑0 −⌠
⌡

𝑡

0

∇𝝑𝑠𝑓(𝝑𝑠) d𝑠

Trajectory 𝑡 ↦ 𝜗𝑡 solves the system of ODEs

d

d𝑡𝝑𝑡 = −∇𝝑𝑡𝑓(𝝑𝑡)

with boundary condition 𝝑0
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Gradient Flows

Consider the sum

𝝑𝑘+1 = 𝝑0 −
𝑘
∑
ℓ=0

𝛼ℓ ⋅ ∇𝝑ℓ𝑓(𝝑ℓ)

If supℓ 𝛼ℓ → 0, converges to continuous-time function
(𝑡 ∈ ℝ≥0)

𝝑𝑡 = 𝝑0 −⌠
⌡

𝑡

0

∇𝝑𝑠𝑓(𝝑𝑠) d𝑠

Trajectory 𝑡 ↦ 𝜗𝑡 solves the system of ODEs

d

d𝑡𝝑𝑡 = −∇𝝑𝑡𝑓(𝝑𝑡)

with boundary condition 𝝑0 (gradient flow of 𝑓)
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The ℓ2-Penalized Flow

In our model, the gradient flow with ℓ2-penalty takes form

d

d𝑡 [
𝐰1(𝑡)
𝐰2(𝑡)

] = −12 ⋅ [
∇𝐰1(𝑡)‖𝐰∗ −𝐰2(𝑡) ⊙𝐰1(𝑡)‖22
∇𝐰2(𝑡)‖𝐰∗ −𝐰2(𝑡) ⊙𝐰1(𝑡)‖22

]

−
𝜂2

2 ⋅ [∇𝐰1(𝑡)‖𝐰1(𝑡)‖22
∇𝐰1(𝑡)‖𝐰2(𝑡)‖22

]
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The ℓ2-Penalized Flow

In our model, the gradient flow with ℓ2-penalty takes form

d

d𝑡 [
𝐰1(𝑡)
𝐰2(𝑡)

] = (𝐰∗ −𝐰2(𝑡) ⊙𝐰1(𝑡)) ⋅ [
𝐰2(𝑡)
𝐰1(𝑡)

] − 𝜂2 ⋅ [𝐰1(𝑡)
𝐰2(𝑡)
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The ℓ2-Penalized Flow

In our model, the gradient flow with ℓ2-penalty takes form

d

d𝑡 [
𝐰1(𝑡)
𝐰2(𝑡)

] = (𝐰∗ −𝐰2(𝑡) ⊙𝐰1(𝑡)) ⋅ [
𝐰2(𝑡)
𝐰1(𝑡)

] − 𝜂2 ⋅ [𝐰1(𝑡)
𝐰2(𝑡)

]

Exercise
As 𝑡 → ∞, the gradient flow converges to a critical point of the
ℓ2-penalized loss. We know that all critical points satisfy
𝐰1 ⊙𝐰1 = 𝐰2 ⊙𝐰2, so

lim
𝑡→∞

(𝐰1(𝑡) ⊙𝐰1(𝑡) − 𝐰2(𝑡) ⊙𝐰2(𝑡)) = 0,

but how can you characterize this convergence?

17 / 17



The ℓ2-Penalized Flow

Theorem
For every 𝑡 ≥ 0,

𝐰1(𝑡) ⊙𝐰1(𝑡) − 𝐰2(𝑡) ⊙𝐰2(𝑡)

= 𝑒−2𝜂2𝑡 ⋅ (𝐰1(0) ⊙𝐰1(0) − 𝐰2(0) ⊙𝐰2(0)).
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