REGULARIZATION IN THE AGE OF MA-CHINE LEARNING

GABRIEL CLARA

DEPARTMENT OF APPLIED MATHEMATICS UNIVERSITY OF TWENTE

JUNE 25, 2025

ABOUT ME

■ PhD student at UTwente (almost done!)

ABOUT ME

- PhD student at UTwente (almost done!)
- Research focus: mathematical foundations of machine learning methods

ABOUT ME

- PhD student at UTwente (almost done!)
- Research focus: mathematical foundations of machine learning methods
- My bosses: Sophie Langer (RU Bochum) and Johannes Schmidt-Hieber (UTwente)

1 Why Study Regularization in Machine Learning?

2 Warm-Up: Ridge Regression

3 How to Build Theory from the Ground Up

■ Observe data $\mathbf{X}_i \in \mathbb{R}^{d_{\mathbf{X}}}$, i = 1, ..., n with labels $\mathbf{Y}_i \in \mathbb{R}^{d_{\mathbf{Y}}}$

- lacksquare Observe data $\mathbf{X}_i \in \mathbb{R}^{d_{\mathcal{X}}}$, $i=1,\ldots,n$ with labels $\mathbf{Y}_i \in \mathbb{R}^{d_{\mathcal{Y}}}$
- Want to predict labels on previously unseen and unlabeled data

- Observe data $\mathbf{X}_i \in \mathbb{R}^{d_x}$, i = 1, ..., n with labels $\mathbf{Y}_i \in \mathbb{R}^{d_y}$
- Want to predict labels on previously unseen and unlabeled data
- **Example:** X_i a medical scan and Y_i a corresponding diagnosis

The Model Class:

- Want to learn functional relationship $Y_i \approx f(X_i)$
- lacktriangle Must choose class $\mathcal F$ of proposed functions f

The Model Class:

- Want to learn functional relationship $Y_i \approx f(X_i)$
- \blacksquare Must choose class $\mathcal F$ of proposed functions f
- Modern ML uses tremendously complex model classes

The Model Class:

- Want to learn functional relationship $Y_i \approx f(X_i)$
- Must choose class \mathcal{F} of proposed functions f
- Modern ML uses tremendously complex model classes
- GPT-3: 175 billion trainable parameters¹

¹Brown, T. B. et al Language Models are Few-Shot Learners (2020)

A Simpler Model Class:

■ Fix $L \ge 2$, rewrite $d_{L+1} = d_x$ and $d_0 = d_y$, and pick d_ℓ for each $\ell = 1, ... L$

A Simpler Model Class:

- Fix $L \ge 2$, rewrite $d_{L+1} = d_x$ and $d_0 = d_y$, and pick d_ℓ for each $\ell = 1, ... L$
- Pick $\sigma: \mathbb{R} \to \mathbb{R}$ and write $\sigma_{W_\ell, \mathbf{v}_\ell}(\mathbf{z}) = \sigma(W_\ell \mathbf{x} + \mathbf{v}_\ell)$, with $W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}}$ and $\mathbf{v}_\ell \in \mathbb{R}^{d_\ell}$

A Simpler Model Class:

- Fix $L \ge 2$, rewrite $d_{L+1} = d_x$ and $d_0 = d_y$, and pick d_ℓ for each $\ell = 1, ... L$
- Pick σ : $\mathbb{R} \to \mathbb{R}$ and write $\sigma_{W_\ell, \mathbf{v}_\ell}(\mathbf{z}) = \sigma(W_\ell \mathbf{x} + \mathbf{v}_\ell)$, with $W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}}$ and $\mathbf{v}_\ell \in \mathbb{R}^{d_\ell}$
- Neural network:

$$f(\mathbf{x}) = W_{L+1} \circ \sigma_{W_L, \mathbf{v}_L} \circ \cdots \circ \sigma_{W_1, \mathbf{v}_1}(\mathbf{x})$$

A Simpler Model Class:

- Fix $L \ge 2$, rewrite $d_{L+1} = d_x$ and $d_0 = d_y$, and pick d_ℓ for each $\ell = 1, ... L$
- Pick σ : $\mathbb{R} \to \mathbb{R}$ and write $\sigma_{W_\ell, \mathbf{v}_\ell}(\mathbf{z}) = \sigma(W_\ell \mathbf{x} + \mathbf{v}_\ell)$, with $W_\ell \in \mathbb{R}^{d_\ell \times d_{\ell-1}}$ and $\mathbf{v}_\ell \in \mathbb{R}^{d_\ell}$
- Neural network:

$$f(\mathbf{x}) = W_{L+1} \circ \sigma_{W_L, \mathbf{v}_L} \circ \cdots \circ \sigma_{W_1, \mathbf{v}_1}(\mathbf{x})$$

■ Alternates affine transformations with (usually) non-linear function σ

Symbol	Terminology
L	Network Depth
d_0	Input Dimension/No. of Features
d_{L+1}	Output Dimension
σ	Activation Function
$\sigma_{{W_\ell},{f v}_\ell}$	Hidden Layer
W_{L+1}	Output Layer
$d_\ell \text{, } \ell = 1, \dots, L$	Hidden Layer Widths

Why Choose Neural Networks as a Model Class?

■ Neural networks with a non-polynomial activation function are dense in the space of continuous functions with respect to compact convergence.

Why Choose Neural Networks as a Model Class?

■ Neural networks with a non-polynomial activation function are dense in the space of continuous functions with respect to compact convergence.²

²Leshno, M. et al Multilayer Feedforward Networks with a Nonpolynomial Activation Function can Approximate any Function (1993)

Why Choose Neural Networks as a Model Class?

- Neural networks with a non-polynomial activation function are dense in the space of continuous functions with respect to compact convergence.
- Can adapt to arbitrarily complex patterns in the data

The Empirical Risk:

lacktriangle To pick the optimal f in our class, need to quantify predictive performance

The Empirical Risk:

- lacktriangle To pick the optimal f in our class, need to quantify predictive performance
- Let $\mathcal{L}_i(f)$ measure fit on i^{th} data point, for example $\mathcal{L}_i(f) = \|\mathbf{Y}_i f(\mathbf{X}_i)\|_2^2$

The Empirical Risk:

- Let $\mathcal{L}_i(f)$ measure fit on i^{th} data point, for example $\mathcal{L}_i(f) = \|\mathbf{Y}_i f(\mathbf{X}_i)\|_2^2$
- If $Y_i = f(X_i)$ for each i, then f minimizes the empirical risk

$$\widehat{\mathcal{L}}_n(f) = \frac{1}{n} \cdot \sum_{i=1}^n \mathcal{L}_i(f)$$

The Empirical Risk:

- Let $\mathcal{L}_i(f)$ measure fit on i^{th} data point, for example $\mathcal{L}_i(f) = \|\mathbf{Y}_i f(\mathbf{X}_i)\|_2^2$
- If $Y_i = f(X_i)$ for each *i*, then *f* minimizes the empirical risk

$$\widehat{\mathcal{L}}_n(f) = \frac{1}{n} \cdot \sum_{i=1}^n \mathcal{L}_i(f)$$

■ With (hypothetical) access to the whole data distribution μ , can compute the population risk

$$\mathcal{L}_{\mu}(f) = \int \mathcal{L}_{s}(f) \, \mathrm{d}\mu(s)$$

How do we Estimate the Optimal Parameters?

■ Ideal model would satisfy $\mathcal{L}(f) = 0$, but we cannot access the population risk

How do we Estimate the Optimal Parameters?

- Ideal model would satisfy $\mathcal{L}(f) = 0$, but we cannot access the population risk
- Can only hope to compute empirical risk minimizer

$$\widehat{f} \in \arg\min_{f \in \mathcal{F}} \widehat{\mathcal{L}}_n(f)$$

How do we Estimate the Optimal Parameters?

- Ideal model would satisfy $\mathcal{L}(f) = 0$, but we cannot access the population risk
- Can only hope to compute empirical risk minimizer

$$\widehat{f} \in \arg\min_{f \in \mathcal{F}} \widehat{\mathcal{L}}_n(f)$$

■ To achieve a robust estimate, must both minimize $\hat{\mathcal{L}}_n$ (data fit) and the gap $\hat{\mathcal{L}}_n - \mathcal{L}$ (generalization error)

Potential Problems:

■ The empirical risk $\widehat{\mathcal{L}}_n$ may feature many local and global minima, not all of which generalize well

Exercise

Consider the linear regression loss

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

with $X \in \mathbb{R}^{n \times d}$ having linearly independent columns and $d \gg n$.

Exercise

Consider the linear regression loss

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

with $X \in \mathbb{R}^{n \times d}$ having linearly independent columns and $d \gg n$. Are there any "bad" solutions to this problem?

Potential Problems:

- The empirical risk $\widehat{\mathcal{L}}_n$ may feature many local and global minima, not all of which generalize well
- Must be careful when computing empirical risk minimizer $\widehat{f} \in \arg\min_{f \in \mathcal{F}} \widehat{\mathcal{L}}_n(f)$

The Training Algorithm:

lacktriangle Typically, cannot directly compute empirical risk minimizer, especially difficult if $\mathcal F$ is a class of neural networks

The Training Algorithm:

- \blacksquare Typically, cannot directly compute empirical risk minimizer, especially difficult if $\mathcal F$ is a class of neural networks
- Approximate iteratively: pick initial guesses $W_{\ell}(0)$ and $\mathbf{v}_{\ell}(0)$, then use gradient descent recursion

$$\begin{bmatrix} W_1(k+1) \\ \vdots \\ W_{L+1}(k+1) \\ \mathbf{v}_1(k+1) \\ \vdots \\ \mathbf{v}_L(k+1) \end{bmatrix} = \begin{bmatrix} W_1(k) \\ \vdots \\ W_{L+1}(k) \\ \mathbf{v}_1(k) \\ \vdots \\ \mathbf{v}_L(k) \end{bmatrix} - \alpha_k \cdot \begin{bmatrix} \nabla_{W_1(k)} \widehat{\mathcal{L}}_n(f) \\ \vdots \\ \nabla_{W_{L+1}(k)} \widehat{\mathcal{L}}_n(f) \\ \nabla_{\mathbf{v}_1(k)} \widehat{\mathcal{L}}_n(f) \\ \vdots \\ \nabla_{\mathbf{v}_L(k)} \widehat{\mathcal{L}}_n(f) \end{bmatrix}$$

IMPLICIT REGULARIZATION

What does this mean for us?

 Despite all the potential problems, gradient descent works well in practice

IMPLICIT REGULARIZATION

What does this mean for us?

- Despite all the potential problems, gradient descent works well in practice
- Example: GD in over-parametrized linear regression yields norm-minimal solutions

IMPLICIT REGULARIZATION

What does this mean for us?

- Despite all the potential problems, gradient descent works well in practice
- Example: GD in over-parametrized linear regression yields norm-minimal solutions
- Regularization implicit to the choices made during training may explain how models generalize

How does Randomness Enter the Picture?

9 | 1

How does Randomness Enter the Picture?

Stochastic gradient descent:

$$W_\ell(k+1) = W_\ell(k) - \alpha_k \cdot \nabla_{W_\ell(k)} \mathcal{L}_{i_k}(f), \qquad \ell=1,\dots,L$$
 with $i_k \sim \mathrm{Unif}(1,\dots,n)$

9 | 1

How does Randomness Enter the Picture?

■ Stochastic gradient descent:

$$W_{\ell}(k+1) = W_{\ell}(k) - \alpha_k \cdot \nabla_{W_{\ell}(k)} \mathcal{L}_{i_k}(f), \qquad \ell = 1, \dots, L$$

with
$$i_k \sim \text{Unif}(1, ..., n)$$

■ Speeds up gradient computation

How does Randomness Enter the Picture?

■ Stochastic gradient descent:

$$W_{\ell}(k+1) = W_{\ell}(k) - \alpha_k \cdot \nabla_{W_{\ell}(k)} \mathcal{L}_{i_k}(f), \qquad \ell = 1, \dots, L$$

with
$$i_k \sim \text{Unif}(1, ..., n)$$

- Speeds up gradient computation
- Can help escape sub-optimal minima²

²Ibayashi, H. et al Why does SGD Prefer Flat Minima? (2023)

9 | 17

General Stochastic Approximation:

■ SGD is an instance of the general algorithm

$$W_{\ell}(k+1) = W_{\ell}(k) - \alpha_k \cdot \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f), \qquad \ell = 1, \dots, L$$

with $\widetilde{\mathcal{L}}_k \sim \widetilde{\mathcal{L}}$ a sample from a random function $f \mapsto \widetilde{\mathcal{L}}(f)$

General Stochastic Approximation:

■ SGD is an instance of the general algorithm

$$W_{\ell}(k+1) = W_{\ell}(k) - \alpha_k \cdot \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f), \qquad \ell = 1, \dots, L$$

with $\widetilde{\mathcal{L}}_k \sim \widetilde{\mathcal{L}}$ a sample from a random function $f \mapsto \widetilde{\mathcal{L}}(f)$

■ In general, iterates converge to distribution concentrated near critical points of

$$f\mapsto \mathbb{E}\big[\widetilde{\mathcal{L}}(f)\big]$$

with step-sizes α_k determining the variance²

²Robbins, H. et al A Stochastic Approximation Method (1951)

General Stochastic Approximation:

■ SGD is an instance of the general algorithm

$$W_{\ell}(k+1) = W_{\ell}(k) - \alpha_k \cdot \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f), \qquad \ell = 1, \dots, L$$

with $\widetilde{\mathcal{L}}_k \sim \widetilde{\mathcal{L}}$ a sample from a random function $f \mapsto \widetilde{\mathcal{L}}(f)$

■ In general, iterates converge to distribution concentrated near critical points of

$$f\mapsto \mathbb{E}\big[\widetilde{\mathcal{L}}(f)\big]$$

with step-sizes α_k determining the variance

■ What if we choose noise such that

$$\mathbb{E}\big[\nabla\widetilde{\mathcal{L}}(f)\big] \neq \nabla\widehat{\mathcal{L}}_n(f)$$

and why would we do so?

9 | 1

Example: Dropout

 During training neurons may correlate with each other and lose expressiveness

Example: Dropout

- During training neurons may correlate with each other and lose expressiveness
- To help, may randomly omit connections from the network during training

Example: Dropout

- During training neurons may correlate with each other and lose expressiveness
- To help, may randomly omit connections from the network during training²

²Srivastava, N. et al *Dropout: A Simple Way to Prevent Neural Networks from Overfitting* (2014)

Example: Dropout

- During training neurons may correlate with each other and lose expressiveness
- To help, may randomly omit connections from the network during training
- Randomized loss $\widetilde{\mathcal{L}}(f) = \widehat{\mathcal{L}}_n(\widetilde{f})$ with \widetilde{f} having randomly deleted connections

)

Example: Stochastic Sharpness-Aware Minimization:

■ Flat regions of the empirical risk are thought to generalize well

Example: Stochastic Sharpness-Aware Minimization:

Flat regions of the empirical risk are thought to generalize well²

²Hochreiter, S. et al Simplifying Neural Nets by Discovering Flat Minima (1994) Foret, P. et al Sharpness-Aware Minimization for Efficiently Improving Generalization (2021)

Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:

- Flat regions of the empirical risk are thought to generalize well
- Flatness of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point \mathbf{w} can be quantified via

$$\mathbf{w}\mapsto \mathbb{E}_{\boldsymbol{\xi}\sim\mathcal{N}(0,I_d)}\big[f(\mathbf{w}+\boldsymbol{\xi})\big]-f(\mathbf{w})$$

0 | 17

Noisy Algorithmic Regularization Methods

Example: Stochastic Sharpness-Aware Minimization:

- Flat regions of the empirical risk are thought to generalize well
- Flatness of a function $f:\mathbb{R}^d\to\mathbb{R}$ at a point \mathbf{w} can be quantified via

$$\mathbf{w} \mapsto \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{N}(0, I_d)} \big[f(\mathbf{w} + \boldsymbol{\xi}) \big] - f(\mathbf{w})$$

■ To jointly optimize loss and flatness, must find

$$\mathbf{w} \in \arg\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{N}(0, \eta^2 \cdot I_d)} \big[f(\mathbf{w} + \boldsymbol{\xi}) \big] \right\}$$

0 |

Example: Stochastic Sharpness-Aware Minimization:

- Flat regions of the empirical risk are thought to generalize well
- Flatness of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point \mathbf{w} can be quantified via

$$\mathbf{w} \mapsto \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{N}(0, I_d)} \big[f(\mathbf{w} + \boldsymbol{\xi}) \big] - f(\mathbf{w})$$

■ To jointly optimize loss and flatness, must find

$$\mathbf{w} \in \arg\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ f(\mathbf{w}) + \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{N}(0, \eta^2 \cdot I_d)} \left[f(\mathbf{w} + \boldsymbol{\xi}) \right] - f(\mathbf{w}) \right\}$$

Example: Stochastic Sharpness-Aware Minimization:

- Flat regions of the empirical risk are thought to generalize well
- Flatness of a function $f: \mathbb{R}^d \to \mathbb{R}$ at a point \mathbf{w} can be quantified via

$$\mathbf{w} \mapsto \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{N}(0, I_d)} [f(\mathbf{w} + \boldsymbol{\xi})] - f(\mathbf{w})$$

■ To jointly optimize loss and flatness, must find

$$\mathbf{w} \in \arg\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ \mathbb{E}_{\boldsymbol{\xi} \sim \mathcal{N}(0, \eta^2 \cdot I_d)} \big[f(\mathbf{w} + \boldsymbol{\xi}) \big] \right\}$$

■ Implies stochastic approximation algorithm

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha_k \cdot \nabla f(\mathbf{w}_k + \boldsymbol{\xi}_k)$$

Recall the general stochastic approximation algorithm

$$W_{\ell}(k+1) = W_{\ell}(k) - \alpha_k \cdot \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f), \qquad \ell = 1, \dots, L$$

What does Algorithmic Randomness do?

 Recall the general stochastic approximation algorithm, which can be rewritten into

$$\begin{split} &W_{\ell}(k+1) \\ &= W_{\ell}(k) - \alpha_k \cdot \mathbb{E} \big[\nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \mid \text{prev. iteration} \big] \\ &+ \alpha_k \cdot \bigg(\mathbb{E} \big[\nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \mid \text{prev. iteration} \big] - \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \bigg) \end{split}$$

 Recall the general stochastic approximation algorithm, which can be rewritten into

$$\begin{split} &W_{\ell}(k+1) \\ &= W_{\ell}(k) - \alpha_k \cdot \mathbb{E} \big[\nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \mid \text{prev. iteration} \big] \\ &+ \alpha_k \cdot \bigg(\mathbb{E} \big[\nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \mid \text{prev. iteration} \big] - \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \bigg) \end{split}$$

 Separates algorithm into deterministic part (expected gradient) and stochastic fluctuations around expectation

 Recall the general stochastic approximation algorithm, which can be rewritten into

$$\begin{split} & W_{\ell}(k+1) \\ &= W_{\ell}(k) - \alpha_k \cdot \mathbb{E} \big[\nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \mid \text{prev. iteration} \big] \\ &+ \alpha_k \cdot \bigg(\mathbb{E} \big[\nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \mid \text{prev. iteration} \big] - \nabla_{W_{\ell}(k)} \widetilde{\mathcal{L}}_k(f) \bigg) \end{split}$$

- Separates algorithm into deterministic part (expected gradient) and stochastic fluctuations around expectation
- Change in expected landscape may induce regularization

 Recall the general stochastic approximation algorithm, which can be rewritten into

$$\begin{split} &W_{\ell}(k+1)\\ &=W_{\ell}(k)-\alpha_k\cdot\mathbb{E}\big[\nabla_{W_{\ell}(k)}\widetilde{\mathcal{L}}_k(f)\mid \text{prev. iteration}\big]\\ &+\alpha_k\cdot\bigg(\mathbb{E}\big[\nabla_{W_{\ell}(k)}\widetilde{\mathcal{L}}_k(f)\mid \text{prev. iteration}\big]-\nabla_{W_{\ell}(k)}\widetilde{\mathcal{L}}_k(f)\bigg) \end{split}$$

- Separates algorithm into deterministic part (expected gradient) and stochastic fluctuations around expectation
- Change in expected landscape may induce regularization
- Challenging analysis, due to many interlinked components

1 Why Study Regularization in Machine Learning?

2 Warm-Up: Ridge Regression

3 How to Build Theory from the Ground Up

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \frac{1}{n} \cdot \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^{\mathsf{t}} \boldsymbol{\beta})^2$$

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \frac{1}{n} \cdot \sum_{i=1}^{n} (Y_i - \mathbf{X}_i^{\mathsf{t}} \boldsymbol{\beta})^2 \propto \|\mathbf{Y} - X \boldsymbol{\beta}\|_2^2$$

with

$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \quad \text{and} \quad X = \begin{bmatrix} \mathbf{X}_1^t \\ \vdots \\ \mathbf{X}_n^t \end{bmatrix}$$

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

■ If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if X^tX is close to singular?

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if $X^{t}X$ is close to singular?
- Suppose $X = \sum_{j=1}^{d} \sigma_j \cdot \mathbf{u}_j \mathbf{v}_j^{\mathsf{t}}$ (SVD)

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if $X^{t}X$ is close to singular?
- Suppose $X = \sum_{i=1}^{d} \sigma_{j} \cdot \mathbf{u}_{j} \mathbf{v}_{j}^{t}$ (SVD), then

$$\hat{\boldsymbol{\beta}} = \left(\left(\sum_{j=1}^{d} \sigma_j \cdot \mathbf{v}_j \mathbf{u}_j^t \right) \left(\sum_{j=1}^{d} \sigma_j \cdot \mathbf{u}_j \mathbf{v}_j^t \right) \right)^{-1} \left(\sum_{j=1}^{d} \sigma_j \cdot \mathbf{v}_j \mathbf{u}_j^t \right) \mathbf{Y}$$

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if $X^{t}X$ is close to singular?
- Suppose $X = \sum_{j=1}^{d} \sigma_j \cdot \mathbf{u}_j \mathbf{v}_j^{\mathsf{t}}$ (SVD), then

$$\hat{\boldsymbol{\beta}} = \left(\sum_{j=1}^{d} \sigma_j^2 \cdot \mathbf{v}_j \mathbf{v}_j^{\mathsf{t}}\right)^{-1} \left(\sum_{j=1}^{d} \sigma_j \cdot \mathbf{v}_j \mathbf{u}_j^{\mathsf{t}}\right) \mathbf{Y}$$

2 | 17

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if $X^{t}X$ is close to singular?
- Suppose $X = \sum_{i=1}^{d} \sigma_{i} \cdot \mathbf{u}_{j} \mathbf{v}_{i}^{t}$ (SVD), then

$$\hat{\boldsymbol{\beta}} = \left(\sum_{j=1}^{d} \frac{1}{\sigma_j^2} \cdot \mathbf{v}_j \mathbf{v}_j^{\mathsf{t}}\right) \left(\sum_{j=1}^{d} \sigma_j \cdot \mathbf{v}_j \mathbf{u}_j^{\mathsf{t}}\right) \mathbf{Y}$$

12 | 17

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if $X^{t}X$ is close to singular?
- Suppose $X = \sum_{j=1}^{d} \sigma_j \cdot \mathbf{u}_j \mathbf{v}_j^{\mathsf{t}}$ (SVD), then

$$\hat{\boldsymbol{\beta}} = \left(\sum_{j=1}^{d} \frac{1}{\sigma_j} \cdot \mathbf{v}_j \mathbf{u}_j^{\mathsf{t}}\right) \mathbf{Y}$$

■ Linear regression loss:

$$\boldsymbol{\beta} \mapsto \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

- If $X^{t}X$ invertible, unique minimizer $\hat{\beta} = (X^{t}X)^{-1}X^{t}Y$
- What happens if $X^{t}X$ is close to singular?
- Suppose $X = \sum_{j=1}^{d} \sigma_j \cdot \mathbf{u}_j \mathbf{v}_j^{\mathsf{t}}$ (SVD), then

$$Cov(\hat{\boldsymbol{\beta}}) = \left(\sum_{j=1}^{d} \frac{1}{\sigma_j} \cdot \mathbf{v}_j \mathbf{u}_j^{\mathsf{t}}\right) Cov(\mathbf{Y}) \left(\sum_{j=1}^{d} \frac{1}{\sigma_j} \cdot \mathbf{u}_j \mathbf{v}_j^{\mathsf{t}}\right)$$

■ Variance diverges as $\sigma_j \rightarrow 0$

What can be done?

■ Replace $X^{t}X$ with $X^{t}X + \lambda \cdot I_{d}$, λ to make it "less singular", so

$$\hat{\boldsymbol{\beta}}_{\lambda} = \left(X^{\mathsf{t}} X + \lambda \cdot I_d \right)^{-1} X^{\mathsf{t}} \mathbf{Y}$$

What can be done?

■ Replace $X^{t}X$ with $X^{t}X + \lambda \cdot I_{d}$, λ to make it "less singular", so

$$\hat{\boldsymbol{\beta}}_{\lambda} = \left(X^{\mathsf{t}} X + \lambda \cdot I_d \right)^{-1} X^{\mathsf{t}} \mathbf{Y} = \left(\sum_{j=1}^{d} \frac{\sigma_j}{\sigma_j^2 + \lambda} \cdot \mathbf{v}_j \mathbf{u}_j^{\mathsf{t}} \right) \mathbf{Y}$$

|2 | 17

What can be done?

■ Replace $X^{t}X$ with $X^{t}X + \lambda \cdot I_{d}$, λ to make it "less singular", so

$$\hat{\boldsymbol{\beta}}_{\lambda} = (X^{\mathsf{t}}X + \lambda \cdot I_d)^{-1}X^{\mathsf{t}}\mathbf{Y} = \left(\sum_{j=1}^{d} \frac{\sigma_j}{\sigma_j^2 + \lambda} \cdot \mathbf{v}_j \mathbf{u}_j^{\mathsf{t}}\right)\mathbf{Y}$$

■ Working backwards, we find that

$$\hat{\boldsymbol{\beta}}_{\lambda} = \underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \left\{ \|\mathbf{Y} - X\boldsymbol{\beta}\|_{2}^{2} + \lambda \cdot \|\boldsymbol{\beta}\|_{2}^{2} \right\}$$

1 Why Study Regularization in Machine Learning?

2 Warm-Up: Ridge Regression

3 How to Build Theory from the Ground Up

■ Consider the linear regression loss

$$\boldsymbol{\beta} \mapsto \frac{1}{2} \cdot \|\mathbf{Y} - X\boldsymbol{\beta}\|_2^2$$

13 | 17

■ A deep version:

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \left\| \mathbf{Y} - X(\mathbf{w}_2 \odot \mathbf{w}_1) \right\|_2^2$$

 $(\mathbf{w}_2 \odot \mathbf{w}_1 \text{ denotes the element-wise product})$

■ Diagonal linear network:

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \left\| \mathbf{Y} - X(\mathbf{w}_2 \odot \mathbf{w}_1) \right\|_2^2$$

13 | 17

■ Diagonal linear network:

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \left\| \mathbf{Y} - X(\mathbf{w}_2 \odot \mathbf{w}_1) \right\|_2^2$$

■ Suppose $\mathbf{Y} = X\mathbf{w}_*$ and X is an orthogonal matrix, then the loss turns into

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2$$

Exercise

How many critical points does the function

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2$$

have, and can you describe them?

STOCHASTIC SHARPNESS-AWARE MINIMIZATION

 Recall that flat regions are thought to generalize well, so want to minimize

$$(\mathbf{w}_1,\mathbf{w}_2) \mapsto \frac{1}{2} \cdot \mathbb{E}_{\boldsymbol{\xi}_1,\boldsymbol{\xi}_2 \sim \mathcal{N}(0,\eta^2 I_d)} \left[\left\| \mathbf{w}_* - (\mathbf{w}_2 + \boldsymbol{\xi}_2) \odot (\mathbf{w}_1 + \boldsymbol{\xi}_1) \right\|_2^2 \right]$$

STOCHASTIC SHARPNESS-AWARE MINIMIZATION

 Recall that flat regions are thought to generalize well, so want to minimize

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \mathbb{E}_{\boldsymbol{\xi}_1, \boldsymbol{\xi}_2 \sim \mathcal{N}(0, \eta^2 I_d)} \left[\left\| \mathbf{w}_* - (\mathbf{w}_2 + \boldsymbol{\xi}_2) \odot (\mathbf{w}_1 + \boldsymbol{\xi}_1) \right\|_2^2 \right]$$

Use stochastic approximation algorithm

$$\begin{bmatrix} \mathbf{w}_{1}(k+1) \\ \mathbf{w}_{2}(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{1}(k) \\ \mathbf{w}_{2}(k) \end{bmatrix}$$
$$-\frac{\alpha_{k}}{2} \cdot \begin{bmatrix} \nabla_{\mathbf{w}_{1}(k)} \| \mathbf{w}_{*} - (\mathbf{w}_{2}(k) + \boldsymbol{\xi}_{2}(k)) \odot (\mathbf{w}_{1}(k) + \boldsymbol{\xi}_{1}(k)) \|_{2}^{2} \\ \nabla_{\mathbf{w}_{2}(k)} \| \mathbf{w}_{*} - (\mathbf{w}_{2}(k) + \boldsymbol{\xi}_{2}(k)) \odot (\mathbf{w}_{1}(k) + \boldsymbol{\xi}_{1}(k)) \|_{2}^{2} \end{bmatrix}$$

STOCHASTIC SHARPNESS-AWARE MINIMIZATION

 Recall that flat regions are thought to generalize well, so want to minimize

$$(\mathbf{w}_1,\mathbf{w}_2) \mapsto \frac{1}{2} \cdot \mathbb{E}_{\boldsymbol{\xi}_1,\boldsymbol{\xi}_2 \sim \mathcal{N}(0,\eta^2 I_d)} \left[\left\| \mathbf{w}_* - (\mathbf{w}_2 + \boldsymbol{\xi}_2) \odot (\mathbf{w}_1 + \boldsymbol{\xi}_1) \right\|_2^2 \right]$$

Use stochastic approximation algorithm

$$\begin{bmatrix} \mathbf{w}_{1}(k+1) \\ \mathbf{w}_{2}(k+1) \end{bmatrix} = \begin{bmatrix} \mathbf{w}_{1}(k) \\ \mathbf{w}_{2}(k) \end{bmatrix}$$
$$-\frac{\alpha_{k}}{2} \cdot \begin{bmatrix} \nabla_{\mathbf{w}_{1}(k)} \| \mathbf{w}_{*} - (\mathbf{w}_{2}(k) + \boldsymbol{\xi}_{2}(k)) \odot (\mathbf{w}_{1}(k) + \boldsymbol{\xi}_{1}(k)) \|_{2}^{2} \\ \nabla_{\mathbf{w}_{2}(k)} \| \mathbf{w}_{*} - (\mathbf{w}_{2}(k) + \boldsymbol{\xi}_{2}(k)) \odot (\mathbf{w}_{1}(k) + \boldsymbol{\xi}_{1}(k)) \|_{2}^{2} \end{bmatrix}$$

■ Induced ℓ_2 -regularizer

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2 + \frac{\eta^2}{2} \cdot (\|\mathbf{w}_1\|_2^2 + \|\mathbf{w}_2\|_2^2)$$

DIAGONAL LINEAR NETWORKS WITH ℓ_2 -PENALTY

Exercise

How many critical points does the function

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2 + \frac{\eta^2}{2} \cdot (\|\mathbf{w}_1\|_2^2 + \|\mathbf{w}_2\|_2^2)$$

have, and can you describe them?

Theorem

Each critical point of the ℓ_2 -penalized loss has the following form: pick $S \subset \{1, \dots, d\}$ and set

$$|\mathbf{w}_{1,i}| = |\mathbf{w}_{2,i}| = \begin{cases} \sqrt{|\mathbf{w}_{*,i}| - \eta^2}, & \text{if } i \in S \text{ and } |\mathbf{w}_{*,i}| \ge \eta^2 \\ 0, & \text{otherwise} \end{cases}$$

with $sign(\mathbf{w}_{1,i}) \cdot sign(\mathbf{w}_{2,i}) = sign(\mathbf{w}_{*,i})$.

DIAGONAL LINEAR NETWORKS WITH ℓ_2 -PENALTY

■ Induced ℓ_2 -regularizer

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2 + \frac{\eta^2}{2} \cdot (\|\mathbf{w}_1\|_2^2 + \|\mathbf{w}_2\|_2^2)$$

■ Induced ℓ_2 -regularizer

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2 + \frac{\eta^2}{2} \cdot \left(\|\mathbf{w}_1\|_2^2 + \|\mathbf{w}_2\|_2^2\right)$$

 \blacksquare Want to study the ℓ_2 -penalized iterates

$$\begin{split} &\begin{bmatrix} \mathbf{w}_1(k+1) \\ \mathbf{w}_2(k+1) \end{bmatrix} \\ &= \begin{bmatrix} \mathbf{w}_1(k) \\ \mathbf{w}_2(k) \end{bmatrix} + \frac{\alpha_k}{2} \cdot \begin{bmatrix} \nabla_{\mathbf{w}_1(k)} \| \mathbf{w}_* - \mathbf{w}_2(k) \odot \mathbf{w}_1(k) \|_2^2 \\ \nabla_{\mathbf{w}_2(k)} \| \mathbf{w}_* - \mathbf{w}_2(k) \odot \mathbf{w}_1(k) \|_2^2 \end{bmatrix} \\ &- \frac{\alpha_k \eta^2}{2} \cdot \begin{bmatrix} \nabla_{\mathbf{w}_1(k)} \| \mathbf{w}_1(k) \|_2^2 \\ \nabla_{\mathbf{w}_2(k)} \| \mathbf{w}_2(k) \|_2^2 \end{bmatrix} \end{split}$$

■ Induced ℓ_2 -regularizer

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2 + \frac{\eta^2}{2} \cdot \left(\|\mathbf{w}_1\|_2^2 + \|\mathbf{w}_2\|_2^2\right)$$

■ Want to study the ℓ_2 -penalized iterates

$$\begin{bmatrix} \mathbf{w}_{1}(k+1) \\ \mathbf{w}_{2}(k+1) \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{w}_{1}(k) \\ \mathbf{w}_{2}(k) \end{bmatrix} - \alpha_{k} \cdot \left(\mathbf{w}_{*} - \mathbf{w}_{2}(k) \odot \mathbf{w}_{1}(k) \right) \cdot \begin{bmatrix} \mathbf{w}_{2}(k) \\ \mathbf{w}_{1}(k) \end{bmatrix}$$

$$- \alpha_{k} \eta^{2} \cdot \begin{bmatrix} \mathbf{w}_{1}(k) \\ \mathbf{w}_{2}(k) \end{bmatrix}$$

■ Induced ℓ_2 -regularizer

$$(\mathbf{w}_1, \mathbf{w}_2) \mapsto \frac{1}{2} \cdot \|\mathbf{w}_* - \mathbf{w}_2 \odot \mathbf{w}_1\|_2^2 + \frac{\eta^2}{2} \cdot \left(\|\mathbf{w}_1\|_2^2 + \|\mathbf{w}_2\|_2^2\right)$$

lacksquare Want to study the ℓ_2 -penalized iterates

$$\begin{bmatrix} \mathbf{w}_{1}(k+1) \\ \mathbf{w}_{2}(k+1) \end{bmatrix}$$

$$= (1 - \alpha_{k}\eta^{2}) \cdot \begin{bmatrix} \mathbf{w}_{1}(k) \\ \mathbf{w}_{2}(k) \end{bmatrix} + \alpha_{k} \cdot (\mathbf{w}_{*} - \mathbf{w}_{2}(k) \odot \mathbf{w}_{1}(k)) \cdot \begin{bmatrix} \mathbf{w}_{2}(k) \\ \mathbf{w}_{1}(k) \end{bmatrix}$$

■ Gradient descent can be hard to study, due to lack of analytical techniques, so let's simplify!

- Gradient descent can be hard to study, due to lack of analytical techniques, so let's simplify!
- Consider the recursion

$$\vartheta_{k+1} = \vartheta_k - \alpha_k \cdot \nabla_{\vartheta_k} f(\vartheta_k)$$

- Gradient descent can be hard to study, due to lack of analytical techniques, so let's simplify!
- Consider the recursion

$$\vartheta_{k+1} - \vartheta_k = -\alpha_k \cdot \nabla_{\vartheta_k} f(\vartheta_k)$$

- Gradient descent can be hard to study, due to lack of analytical techniques, so let's simplify!
- Consider the sum

$$\vartheta_{k+1} - \vartheta_0 = -\sum_{\ell=0}^k \alpha_\ell \cdot \nabla_{\vartheta_\ell} f(\vartheta_\ell)$$

- Gradient descent can be hard to study, due to lack of analytical techniques, so let's simplify!
- Consider the sum

$$\vartheta_{k+1} = \vartheta_0 - \sum_{\ell=0}^k \alpha_\ell \cdot \nabla_{\vartheta_\ell} f(\vartheta_\ell)$$

Consider the sum

$$\vartheta_{k+1} = \vartheta_0 - \sum_{\ell=0}^k \alpha_\ell \cdot \nabla_{\vartheta_\ell} f(\vartheta_\ell)$$

■ If $\sup_{\ell} \alpha_{\ell} \to 0$, converges to continuous-time function $(t \in \mathbb{R}_{\geq 0})$

$$\boldsymbol{\vartheta}_t = \boldsymbol{\vartheta}_0 - \int_0^t \nabla_{\boldsymbol{\vartheta}_s} f(\boldsymbol{\vartheta}_s) \, \mathrm{d}s$$

Consider the sum

$$\vartheta_{k+1} = \vartheta_0 - \sum_{\ell=0}^k \alpha_\ell \cdot \nabla_{\vartheta_\ell} f(\vartheta_\ell)$$

■ If $\sup_{\ell} \alpha_{\ell} \to 0$, converges to continuous-time function $(t \in \mathbb{R}_{\geq 0})$

$$\vartheta_t = \vartheta_0 - \int_0^t \nabla_{\vartheta_s} f(\vartheta_s) \, \mathrm{d}s$$

■ Trajectory $t \mapsto \vartheta_t$ solves the system of ODEs

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta_t = -\nabla_{\vartheta_t} f(\vartheta_t)$$

with boundary condition ϑ_0

Consider the sum

$$\vartheta_{k+1} = \vartheta_0 - \sum_{\ell=0}^k \alpha_\ell \cdot \nabla_{\vartheta_\ell} f(\vartheta_\ell)$$

■ If $\sup_{\ell} \alpha_{\ell} \to 0$, converges to continuous-time function $(t \in \mathbb{R}_{\geq 0})$

$$\vartheta_t = \vartheta_0 - \int_0^t \nabla_{\vartheta_S} f(\vartheta_S) \, \mathrm{d}S$$

■ Trajectory $t \mapsto \vartheta_t$ solves the system of ODEs

$$\frac{\mathrm{d}}{\mathrm{d}t}\vartheta_t = -\nabla_{\vartheta_t} f(\vartheta_t)$$

with boundary condition ϑ_0 (gradient flow of f)

THE ℓ_2 -PENALIZED FLOW

lacksquare In our model, the gradient flow with ℓ_2 -penalty takes form

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{w}_{1}(t) \\ \mathbf{w}_{2}(t) \end{bmatrix} = -\frac{1}{2} \cdot \begin{bmatrix} \nabla_{\mathbf{w}_{1}(t)} \| \mathbf{w}_{*} - \mathbf{w}_{2}(t) \odot \mathbf{w}_{1}(t) \|_{2}^{2} \\ \nabla_{\mathbf{w}_{2}(t)} \| \mathbf{w}_{*} - \mathbf{w}_{2}(t) \odot \mathbf{w}_{1}(t) \|_{2}^{2} \end{bmatrix} - \frac{\eta^{2}}{2} \cdot \begin{bmatrix} \nabla_{\mathbf{w}_{1}(t)} \| \mathbf{w}_{1}(t) \|_{2}^{2} \\ \nabla_{\mathbf{w}_{1}(t)} \| \mathbf{w}_{2}(t) \|_{2}^{2} \end{bmatrix}$$

lacksquare In our model, the gradient flow with ℓ_2 -penalty takes form

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{w}_1(t) \\ \mathbf{w}_2(t) \end{bmatrix} = \left(\mathbf{w}_* - \mathbf{w}_2(t) \odot \mathbf{w}_1(t) \right) \cdot \begin{bmatrix} \mathbf{w}_2(t) \\ \mathbf{w}_1(t) \end{bmatrix} - \eta^2 \cdot \begin{bmatrix} \mathbf{w}_1(t) \\ \mathbf{w}_2(t) \end{bmatrix}$$

THE ℓ_2 -PENALIZED FLOW

lacksquare In our model, the gradient flow with ℓ_2 -penalty takes form

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{bmatrix} \mathbf{w}_1(t) \\ \mathbf{w}_2(t) \end{bmatrix} = \left(\mathbf{w}_* - \mathbf{w}_2(t) \odot \mathbf{w}_1(t) \right) \cdot \begin{bmatrix} \mathbf{w}_2(t) \\ \mathbf{w}_1(t) \end{bmatrix} - \eta^2 \cdot \begin{bmatrix} \mathbf{w}_1(t) \\ \mathbf{w}_2(t) \end{bmatrix}$$

Exercise

As $t \to \infty$, the gradient flow converges to a critical point of the ℓ_2 -penalized loss. We know that all critical points satisfy $\mathbf{w}_1 \odot \mathbf{w}_1 = \mathbf{w}_2 \odot \mathbf{w}_2$, so

$$\lim_{t \to \infty} \left(\mathbf{w}_1(t) \odot \mathbf{w}_1(t) - \mathbf{w}_2(t) \odot \mathbf{w}_2(t) \right) = \mathbf{0},$$

but how can you characterize this convergence?

Theorem

For every
$$t \geq 0$$
,

$$\begin{aligned} &\mathbf{w}_1(t)\odot\mathbf{w}_1(t)-\mathbf{w}_2(t)\odot\mathbf{w}_2(t)\\ &=e^{-2\eta^2t}\cdot\Big(\mathbf{w}_1(0)\odot\mathbf{w}_1(0)-\mathbf{w}_2(0)\odot\mathbf{w}_2(0)\Big). \end{aligned}$$

