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This seminar

Two papers:
e MG, A. Zhiyanov, A. Tikhonov, & L. Prokhorenkova. (2021). Good
classification measures and how to find them. Advances in neural
information processing systems (NeurlPS).

e MG, A. Tikhonov, & L. Prokhorenkova. (2021). Systematic analysis
of cluster similarity indices: How to validate validation measures. In
International Conference on Machine Learning (ICML).
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Compare outputs to desired output or ground truth.
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Performance
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Ranking

Output k Score k

Obtaining data with ground truth is a problem of its own, which we will
ignore today.
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Classification and clustering

@ Validation measures for two common ML tasks:
» Classification: assign each object to one of a set of predefined classes.
» Clustering: group similar objects together without predefined classes.
o Classification yields a labeling, clustering a clustering (partition of the
data points).
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Classification

Input: set of objects with data (features, relations)
Output: a labeling (assignment of each object to one of a set of
predefined classes)
Example applications:

» Spam detection

» Handwritten digit recognition

» Medical diagnosis
Classification algorithms are often trained on some example data with
known labels (ground truth). This is known as supervised learning.

Many methods: neural networks, decision trees, logistic regression. . .
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Clustering

Definition: partitioning a set of objects into meaningful groups.
(Intentionally vague)

Input: set of objects with data (features, relations)

Output: a clustering (partition of the data set into groups of similar
objects)

Example applications:

» Social network analysis
» Exploratory data analysis
> News aggregation

Clustering is an unsupervised learning problem: no training phase.



Clustering algorithms
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Clustering vs. Classification: MNIST dataset
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@ A classification algorithm would predict which number is written,
@ A clustering algorithm would group similar symbols together.

@ For classification, we need to first define the classes and provide
labeled training data.



Overview

@ Lecture 1: Validating Validation Measures for Classification.

@ Lecture 2: Validating Validation Measures for Clustering.
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Part |: Validating Validation Measures for
Classification
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Rain prediction example

Let A denote the true labeling and let By, B> denote two labelings
obtained by different algorithms. We say that two measures My, M, are
inconsistent if Ml(A, Bl) > Ml(A, BQ) but MQ(A, Bl) < MQ(A, B2) (or the
other way around).

Table 4: Inconsistency of binary measures for rain prediction, %

| Acc  BA I K CE GM; CC SBA

Acc — 965 410 375 3.1 38.7 443 559
BA 96.5 556 589 99.7 5777 520 404
I 41.0 55.6 — 33 442 2.2 34 150
K 375 589 33 40.7 1.1 6.7 183
CE 3.1 997 442 407 — 419 475 591
GM, | 38.7 577 2.2 1.1 419 — 55 171
CcC 443 520 34 6.7 475 55 — 114

SBA | 559 404 150 183 59.1 17.1 114 —

12



Confusion matrices

Given labelings A, B of n data points into m classes, we define the

confusion matrix C = (cj){":_ 0 by

cij = {x [ Alx) = i, B(x) = j}|.
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Confusion matrices

Given labelings A, B of n data points into m classes, we define the

confusion matrix C = (CU)Z};%) by

6 = 1{x | AGx) = i, B(x) = j}].

For binary classification:
@ c11: true positives
@ cjo: false negatives
@ cp1: false positives
@ Cpo: true negatives

(but I will try to avoid these terms since | find them confusing)

Also, a; = ZJ- Cij, bj =) cj, n= Ei,j Cij-

13



Examples of binary classification measures

@ Accuracy is the fraction of correctly labeled data points:
Acc(A, B) = (c11 + coo)/n.
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Recall(A, B) = c11/a:.
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Examples of binary classification measures

Accuracy is the fraction of correctly labeled data points:

Acc(A, B) = (c11 + coo)/n.

Recall is the fraction of correctly identified true positives:

Recall(A, B) = c11/a:.

Precision is the fraction of predicted positives that are true:

Precision(A, B) = c11/b1.

The F1 measure is the harmonic mean between recall and precision:
Fi(AB) = i = alzinbl.

C11 C11

Matthew’s Correlation Coefficient is the (Pearson) correlation
between the indicators:

CC(A, B) = nciy — aiby
e \/al(n—al)bl(n—bl)'

14



Exercises

Recall

2 ~ab
‘UL and CC(A,B) = fcn — a1

Fi(A,B) = N \/al(n—al)b1(n—b1).

a1+ by’

@ Consider labelings A, B, where B labels all data points to 1 (i.e.,
b1 = n). Express F1(A, B) in terms of n and aj.

@ Define F] as the arithmetic mean of recall and precision. Compute
F{(A, B) for the same labelings A, B.

© Can you explain why the harmonic mean rather than the arithmetic
mean is chosen?

© Consider a fixed labeling A with a; positives and consider a random
labeling B with by positives. Express E[F1(A, B)] in terms of ay, by, n.

@ Consider the same A, B as above. Compute E[CC(A, B)].

15



Answers

Q Fi(AB) =2

al+n

Q@ F(AB)=35+ 3.

© Harmonic mean penalizes extreme values more than arithmetic mean.
If either recall or precision is low, F; will be low as well.

Q E[R(A B)] = 525

© E[CC(A, B)] = 0.

16



More measures

Binary Multiclass
2 -c - .
F-measure (F) M% micro / macro / weighted
c11 2 g
Jaccard (J) CTEr e micro / macro / weighted
: c11c00—c01¢10 ”Zmnl ci=X ity !bias
Matthews Coefficient (CC) e he T el
m—1
Accuracy (Acc) 2@—“
Balanced Accuracy (BA) L Zm e c’f
m—1 ™
Cohen’s Kappa (r) LDHEE:Tho SSTLILT] E‘:zn C"m_%: o_aibi
n?—31"0" aib;

- 1 i <
Confusion Entropy (CE) — 50 i,]zi#j (Cn JCTo—— #TJ + cijlogy,, o m’lg)
Symmetric Balanced Accuracy (SBA) = :151 (%‘ + 1—"')

Generalized Means (GM) e o b micro / macro / weighted
{5 (afap+o7p)
Correlation Distance (CD) L arccos(CC)
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F1vs CC

The advantages of the Matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation
D Chicco, G Jurman - BMC genomics, 2020 - Springer

... We believe that the Matthews correlation coefficient should be preferred to accuracy and
F 1 score in evaluating binary classification tasks by all scientific communities. ...
97 Save D9 Cite Cited by 6584 Related articles All 19 versions Import into BibTeX

@ Makes the argument that F1 only uses 3 out of four confusion matrix
entries, ignoring cop (true negatives).
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F1vs CC

The advantages of the Matthews correlation coefficient (MCC) over F1 score
and accuracy in binary classification evaluation

D Chicco, G Jurman - BMC genomics, 2020 - Springer

... We believe that the Matthews correlation coefficient should be preferred to accuracy and

F 1 score in evaluating binary classification tasks by all scientific communities. ...

¥y Save D9 Cite Cited by 6584 Related articles All 19 versions Import into BibTeX

@ Makes the argument that F1 only uses 3 out of four confusion matrix
entries, ignoring cpo (true negatives).

@ Also performs experiments that show that F1 and accuracy can be
misleading, especially with imbalanced data.
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Experiments vs theory

Practical examples and experiments are valuable, but context-dependent.

19



Experiments vs theory

Practical examples and experiments are valuable, but context-dependent.

Instead, we formalize theoretical properties and provide mathematical
proofs or counter-examples for each measure.

19



Experiments vs theory

Practical examples and experiments are valuable, but context-dependent.

Instead, we formalize theoretical properties and provide mathematical
proofs or counter-examples for each measure.

Measure Max Min CSym Sym Dist Mon SMon CB ACB
Fy (binary) X X X X X X
J (binary) X X X X X
CccC /X X /X /X

Acc X X
BA X X

K X X /X X

CE X X X X X X
SBA X

GM (binary) X

CD /X /X /X X

Properties of validation measures and averagings, v/ /X indicates that property is
satisfied only in the binary case.



Before defining these properties...

Can you come up with desirable properties for validation
measures?
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Before defining these properties...

Can you come up with desirable properties for validation
measures?

We start with defining some properties that are easy to check.
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Maximum agreement

It's helpful if we can see from M(A, B), whether A= B.

Definition
A measure M satisfies maximal agreement if there exists a constant Cmax
such that for all C, M(C) < cmax with equality iff C is diagonal.
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@ Cmax = 1 for accuracy, F;, CC and &,

21



Maximum agreement

It's helpful if we can see from M(A, B), whether A= B.

Definition
A measure M satisfies maximal agreement if there exists a constant Cmax
such that for all C, M(C) < cmax with equality iff C is diagonal.

For example,
@ Cmax = 1 for accuracy, F;, CC and &,

@ but not Recall = %11 (e.g., b1 = n).
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Minimum agreement

For interpretability, it helps if a measure assigns values to a fixed interval,
i.e., M(A, B) € [Cmin, Cmax] for all A, B, where both cmin, Cmax are
attainable for fixed A.

22



Minimum agreement

For interpretability, it helps if a measure assigns values to a fixed interval,
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A measure M satisfies minimal agreement if there exists a constant ¢,
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Minimum agreement

For interpretability, it helps if a measure assigns values to a fixed interval,
i.e., M(A, B) € [Cmin, Cmax] for all A, B, where both cmin, Cmax are
attainable for fixed A.

Definition

A measure M satisfies minimal agreement if there exists a constant ¢,
such that for all C, M(C) > cmin with equality iff the diagonal of C is zero,
i.e., ¢;j = 0 for all /.

@ Acc satisfies this with ¢nin = 0.
@ CC satisfies this with ¢min = —1.
@ F7 does not satisfy this.
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Symmetry

Definition
A measure M is symmetric if M(A, B) = M(B, A) (i.e. M(C) = M(C"))
holds for all C.
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Symmetry

Definition
A measure M is symmetric if M(A, B) = M(B, A) (i.e. M(C) = M(C"))
holds for all C.

e Balanced accuracy BA(A,B) = L 27;_01 < is not symmetric. Most
others are.
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Symmetry

Definition
A measure M is symmetric if M(A, B) = M(B, A) (i.e. M(C) = M(C"))
holds for all C.

m—1 ¢j

e Balanced accuracy BA(A, B) = L 3" Si is not symmetric. Most
others are.

@ The labelings A, B often take different roles, which may justify
asymmetry. However, it is not straightforward what such asymmetry
should look like.
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Class symmetry

Definition
A measure M is class-symmetric if, for any permutation 7 of the classes
{1,..., m} and any confusion matrix C, M(C) = M(C) holds, where C is

given by & = Cr(j)x(j)-
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Class symmetry

Definition
A measure M is class-symmetric if, for any permutation 7 of the cIassNes
{1,..., m} and any confusion matrix C, M(C) = M(C) holds, where C is

given by & = Cr(j)x(j)-

@ Class asymmetry can be justified if the classes have different roles.
But again, what should this asymmetry look like?

@ Most measures are class-symmetric.

24



Exercises

(for binary classification)

@ Give a counter-example that shows that F; does not satisfy minimal
agreement.

@ Let A be a binary labeling and let A€ denote its opposite. Calculate
K(A, AC).

Q Is F; class-symmetric?

25



Answers

Q@ A=11,0,0],B=[0,1,0]. Then Fi(A, B) =0 but ¢y = 1.
Q@ We get c11 = cgo =0 and by = n— ay.

—2a1(n — a1)

A AC) = :
A A7) n?2 —2ay(n— a)
2¢c00  _ pn—ai—biten

@ No, the inverse is

ao+by 2n—a1—by

26



Distance

Recall that a function d is a distance whenever it is symmetric,
non-negative (with d(A, B) = 0 iff A = B), and satisfies the triangle
inequality

d(A,C) < d(A B)+d(B,C).

Definition
A measure has the distance property if it can be linearly transformed to a
metric distance.

27
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Distance

Recall that a function d is a distance whenever it is symmetric,
non-negative (with d(A, B) = 0 iff A = B), and satisfies the triangle
inequality

d(A,C) < d(A B)+d(B,C).

Definition
A measure has the distance property if it can be linearly transformed to a
metric distance.

@ 1 — Acc is the Hamming distance.

@ A distance interpretation can be useful for theoretical analysis (e.g.,
deriving performance guarantees).

o Difficult to check.
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Exercises

@ Which of the other properties are necessary for the distance property?

Let us represent a binary labeling A as an n-dimensional binary vector, so
that (A, B) = c11. Let 1 denote the all-ones vector.

@ Let A be the projection of A onto the surface (x,1) = 0. Calculate A.

© Calculate the angle between A and B. Express your answer in terms
of C11, 41, bl, n.

@ Which validation measure do you recognize?

28



Answers

@ Symmetry and maximal agreement.
@ A=A-21
o

<A, é> nciy — albl

(A A - (B, B) ~ Vai(n—anbi(n— br)

© CD (arccos of Matthew's Correlation Coefficient).

/(A B) =

29



Monotonicity

Informally, if we change B to agree more with A, then M(A, B) should
increase.
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Monotonicity

Informally, if we change B to agree more with A, then M(A, B) should
increase.

Definition
A measure M is monotone if M(C) < M(C) for any confusion matrices C
and C such that C is obtained from C by decrementing an off-diagonal

entry c,, and incrementing ca, or cpp (and none of the row- or
column-sums of C equal n).
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Monotonicity

Informally, if we change B to agree more with A, then M(A, B) should
increase.

Definition
A measure M is monotone if M(C) < M(C) for any confusion matrices C
and C such that C is obtained from C by decrementing an off-diagonal

entry c,, and incrementing ca, or cpp (and none of the row- or
column-sums of C equal n).

Definition

A measure M is strongly monotone if M(C) < M(C) for any confusion
matrices C and C such that C is obtained from C by either increasing a
diagonal entry or decreasing an off-diagonal entry (and none of the row- or
column-sums of C equal n and that C and € are not both diagonal or
zero-diagonal matrices).
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Monotonicity

@ Tricky to prove, annoying to find counter-examples.

@ F; and Jaccard are monotone, but not strongly monotone. (remains
constant when changing cop)

@ x sometimes even increases when increasing off-diagonal entries:
12 13
r(15) <r(13)-

31



Constant baseline

Many measures are biased towards certain types of labelings:
@ Accuracy is biased towards the majority class.

@ F1 is biased towards labelings with many positives.
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Constant baseline

Many measures are biased towards certain types of labelings:

@ Accuracy is biased towards the majority class.
@ F1 is biased towards labelings with many positives.

Recall that for fixed A and random B, we have

231b1

E[Fl(A» B)] = m7

which is increasing in b;.
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Constant baseline

Many measures are biased towards certain types of labelings:
@ Accuracy is biased towards the majority class.
@ F1 is biased towards labelings with many positives.

Recall that for fixed A and random B, we have

231b1
E[F(A,B)] = ———,
[F1(A, B)] n(a1 + b1)
which is increasing in b;.
Let B ~ U(bs,...,bm) denote a random labeling with sizes by, ..., bp.

Definition

A measure M has a constant baseline if there exists cyase(m) that does not
depend on n but may depend on m, such that for any A and non-unary
class sizes by, ..., by, it holds that Eg_yp,,.... 5, [M(A;, B)] = cbase(m).

32



o Note that E[¢;] = 3i%j

Constant baseline

ibj
o
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Constant baseline

a,-bj
no-

o Note that E[¢;] =

@ Easy to prove, but difficult to find counter-examples.
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Constant baseline

o Note that E[c;] = a’:f.

@ Easy to prove, but difficult to find counter-examples.
o CB is particularly important when trying to find the best threshold for
a classifier.
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Constant baseline

a,-bj
no-

Note that E[c;] =
Easy to prove, but difficult to find counter-examples.

CB is particularly important when trying to find the best threshold for
a classifier.

Concretely, rain forecasters optimized for F; will predict more rain
than rain forecasters optimized for Acc.
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Approximate constant baseline

Definition
M has an approximate constant baseline if there exists a function cpase(m)
that does not depend on n but may depend on m such that for any class

sizes a1,...,am and any non-unary by, ..., by, M(C) = cpase(m), where

— _ ajb;
Cj = -

34



Approximate constant baseline

Definition
M has an approximate constant baseline if there exists a function cpase(m)
that does not depend on n but may depend on m such that for any class

sizes ay,...,am and any non-unary by, ..., by, M(C) = cpase(m), where
a,-bj
L,

g =

o Constant baseline implies approximate constant baseline.
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Approximate constant baseline

Definition
M has an approximate constant baseline if there exists a function cpase(m)
that does not depend on n but may depend on m such that for any class

sizes ay,...,am and any non-unary by, ..., by, M(C) = cpase(m), where
a,-bj
L,

g =

o Constant baseline implies approximate constant baseline.
@ CC has a constant baseline, but CD does not (due to the arccos).
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Approximate constant baseline

Definition
M has an approximate constant baseline if there exists a function cpase(m)
that does not depend on n but may depend on m such that for any class

sizes a1, ...,am and any non-unary by, ..., bm, M(C) = chase(m), where
a,-bj
L,

g =

o Constant baseline implies approximate constant baseline.
@ CC has a constant baseline, but CD does not (due to the arccos).

@ CD does have ACB.
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The properties

Measure Max Min CSym Sym Dist Mon SMon CB ACB
F; (binary) v X X v X v X X X
J (binary) v X X v v v X X X
ccC o /X v v X VX VXK v v
Acc v v v v v 4 4 X X
BA v v v X X v v v v
K v X v v X /X X v v
CE 4 X 4 v X X X X X
SBA v v v 4 X 4 v v v
GM (binary) | v v v X v v v v
CDh VAR 4 v RS SR X v

Properties of validation measures and averagings, ///X indicates that property is

Note that there is no measure that satisfies Dist, Mon and CB.

satisfied only in the binary case.
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Impossibility theorem

Theorem

A binary validation measure cannot simultaneously satisfy the distance
property, monotonicity, and constant baseline.

36



Impossibility proof
Let A have a single positive and n — 1 negatives. Let By ~ U(n—1,1) and
By ~ U(n—2,2). Let d = cpax — M.
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Impossibility proof
Let A have a single positive and n — 1 negatives. Let By ~ U(n—1,1) and
By ~ U(n—2,2). Let d = cpax — M.
CB requires E[M(A, B1)] = E[M(A, B)], which gives

1 n—1
7Cmax+
n

2
M(?nlz):;’\/’(%n

2)+
@2/\4(%"92) —cmaX:(n—l)M((l)

n— 2) 2)M(gnl3) (1)
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Impossibility proof
Let A have a single positive and n — 1 negatives. Let By ~ U(n—1,1) and
By ~ U(n—2,2). Let d = cpax — M.
CB requires E[M(A, B1)] = E[M(A, B)], which gives

1 n—1
7Cmax+
n

n—2

M(9,1) = *M(1n 2) + M(9,13)
<:>2M(1n 2) _Cmax:(”_l)M(?niz) _(”_2)M(gn£3)~ (1)

Consider a labeling C with a single positive that does not coincide with the
positive of A and a labeling B = A+ C (i.e., two positives). Using
d(A, C) < d(A, B) + d(B, C):

Cmax — M(? ni2) < 2Cmax — M((l)niz) - M(% n92)
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Let A have a single positive and n — 1 negatives. Let By ~ U(n—1,1) and
By ~ U(n—2,2). Let d = cpax — M.
CB requires E[M(A, B1)] = E[M(A, B)], which gives

1 n—1
7Cmax+
n

n—2

M(9,1) = *M(1n 2) + M(9,13)
<:>2M(1n 2) _Cmax:(”_l)M(?niz) _(”_2)M(gn£3)~ (1)

Consider a labeling C with a single positive that does not coincide with the
positive of A and a labeling B = A+ C (i.e., two positives). Using
d(A, C) < d(A, B) + d(B, C):

Dist m
Cmax_M(ln 2) Ss 2Cmax_M((1)ni2)_M(%n92)Sy: 2(Cmax_M(%n92))v

This is rewritten to
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Impossibility proof
Let A have a single positive and n — 1 negatives. Let By ~ U(n—1,1) and
By ~ U(n—2,2). Let d = cpax — M.
CB requires E[M(A, B1)] = E[M(A, B)], which gives

1 n—1 n—2

— Cmax +
n

M((l)nl2) *M(1n 2)+ M(gnl?;)
S2M (1,%) —Cmax=(n=M (3 ,2,) = (n=2)M (3 ,15). (1)
Consider a labeling C with a single positive that does not coincide with the
positive of A and a labeling B = A+ C (i.e., two positives). Using
d(A, C) < d(A, B) + d(B, C):
Dist 11 1 0
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Impossibility proof
Let A have a single positive and n — 1 negatives. Let By ~ U(n—1,1) and
By ~ U(n—2,2). Let d = cpax — M.
CB requires E[M(A, B1)] = E[M(A, B)], which gives

1 n—1
7Cmax+
n

n—2

M((l)nl2) *M(1n 2)+ M(gnl?;)
S2M (1,%) —Cmax=(n=M (3 ,2,) = (n=2)M (3 ,15). (1)
Consider a labeling C with a single positive that does not coincide with the
positive of A and a labeling B = A+ C (i.e., two positives). Using
d(A, C) < d(A, B) + d(B, C):
Dist 11 1 0
Cmax — /\/7(1 n— 2) < 2Cmax — M(O n—2) - M(l n—2)

This is rewritten to
2M(1n 2)_CmaX£M(?ni2)~ (2)
Combining (1) and (2), we obtain
(”_1)M(1n 2) (”_2)M(2n 3) < M(ln 2)

We rewrite this to M (1 ol 2) <M (2 ot 3) which contradicts monotonicity. 37



End of Part |
Questions?
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Part Il: Validating Validation Measures for
Clustering
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Community detection
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How to measure performance?

Algorithm 2.

Algorithm 1.

Which algorithm was least wrong?
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Clustering vs classification

Clusterings (partitions) have a more complex structure than labelings,
since we don't care about the identities of the clusters.
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Clustering vs classification

Clusterings (partitions) have a more complex structure than labelings,
since we don't care about the identities of the clusters.

@ A labeling can be used to represent a clustering, but we don't care
about the ordering of the labels.

@ We can define a confusion matrices as before, they don't need to be
square.

e But M(C) = M(C’) for any C’ that is obtained by permuting the rows
or columns of C.

e Matching-based measures use a (multiclass) classification measure
M to define M(C) = Mp(C*), where C* corresponds to the
mapping between clusters of A and B that maximizes My, (C*).

@ We won't discuss these because they are complicated and don't have
good properties.
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Pair-counting measures and binary classification

For two clusterings A, B, we can count the number of pairs of data points
that are

@ in the same cluster in both A and B (c11),
@ in the same cluster in A but in different clusters in B (c10),
e in different clusters in A but in the same cluster in B (co1),
e in different clusters in both A and B (coo)-
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This gives a 2 x 2 confusion matrix that can be used with any binary
classification measure.

o ciitcotcntao=(5)=N

° ciitco=); (32’) =: Mmy
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Pair-counting measures and binary classification

For two clusterings A, B, we can count the number of pairs of data points
that are

@ in the same cluster in both A and B (c11),
@ in the same cluster in A but in different clusters in B (c10),
e in different clusters in A but in the same cluster in B (co1),
e in different clusters in both A and B (coo)-

This gives a 2 x 2 confusion matrix that can be used with any binary
classification measure.

@ C11 + ¢10 + o1 + Coo = (;) =N
@ C11+ Cio = Zi (32’) =:ma
The most popular pair-counting measures are
e Rand Index (Acc)
e Adjusted Rand Index (Cohen's kappa)
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Information-theoretic measures

We can interpret a clustering as a discrete distribution over the labels
0,...,m— 1 with probability a;/n. The corresponding entropy is

m—1
a; a;
H = — — —
(A)==>_ " log",
i=0
and
m—1m-1 c c
H(A,B) = — L log 2
n n
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Information-theoretic measures

We can interpret a clustering as a discrete distribution over the labels
0,...,m— 1 with probability a;/n. The corresponding entropy is

m—1 2 3

H — _ a a

(A)==>_ " log",

i=0
and
m—1m-1 c c
H(A,B) = — L log 2
n n
i=0 j=i

The mutual information is

M(A, B) = H(A) + H(B) — H(A, B).
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Information-theoretic measures

We can interpret a clustering as a discrete distribution over the labels
0,...,m— 1 with probability a;/n. The corresponding entropy is

m—1
a; a;
HA) = -5 Ziog 2
(A)==>_ " log",
i=0
and
m—1m-1 c c
H(A,B) = — L log 2
. — N n
i=0 j=i

The mutual information is
M(A, B) = H(A) + H(B) — H(A, B).
This can be normalized (in several ways) to obtain Normalized Mutual
Information (NMI)
M(A, B)

NMI(A, B) = AT

44



Does it matter which measure we use?

There are many different measures. Do they differ significantly?

(a) FNML R, AR, J, D, W, (b) NMI, NMI,,..., VI, AMI,
FMeasure, BCubed S&S, CC, CD

We found four such clustering triplets that fully distinguish the 16
measures we considered.
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Does it really matter which measure we use?

We took 16 benchmark clustering datasets and applied 8 standard
clustering algorithms. We count the fraction of times that two measures
disagree on which of two algorithms is better.

Table 3. Inconsistency of indices on real-world clustering datasets, %
‘ NMI  NMlIpx VI FNMI AMI R AR J W S&S CC FMeas BCub

NMI - 5.4 403 17.3 92 134 157 352 684 201 185 31.7 32.0
NMIpax - 411 16.5 132 125 141 343 688 21.1 189 30.3 32.4
VI - 347 418 452 376 171 288 36.0 37.2 18.1 13.6
FNMI - 233 240 190 299 570 26.7 238 27.5 26.7
AMI - 211 173 333 613 151 13.6 35.0 34.4
R - 155 356 715 21.1 20.7 32.5 35.8
AR - 235 594 11.7 8.3 25.3 28.1
7 - 359 231 238 10.7 9.7
w - 535 5438 40.7 374
S&S - 36 26.2 27.8
CcC - 27.0 28.8
FMeas - 77
BCub -
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Properties for pair-counting measures.

Properties for general measures.
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Properties
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NMI X X R X X
NMipmax X X AR X X X
FNMI X X X X J X X X X
Vi X W X X X X X X X X
sMI X X X X D X X X x X
FMeasure X X X cc X
BCubed X X S&S X
AMI X X cD X
Properties for general measures. Properties for pair-counting measures.

Some properties can only be defined for pair-counting measures (e.g.,
minimal agreement, approximate constant baseline).
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Monotonicity

Monotonicity is more complicated for clusterings.
Let A; denote the ith cluster of clustering A.

@ Perfect merge: If A1, Ao C B;, then merging A1, As should increase
the measure.

@ Perfect split: If Ay N B; # 0 but Ay ¢ B;, then splitting A; into
A1 N B;j and A \ B; should increase the measure.
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Monotonicity

Monotonicity is more complicated for clusterings.
Let A; denote the ith cluster of clustering A.
@ Perfect merge: If A1, Ao C B;, then merging A1, As should increase
the measure.
@ Perfect split: If Ay N B; # 0 but Ay ¢ B;, then splitting A; into
A1 N B;j and A \ B; should increase the measure.
For any A, B, we can obtain B from A by a sequence of perfect splits and
merges.
If a binary classification measure is monotone, then the corresponding
pair-counting clustering measure is also monotone w.r.t. perfect splits and
merges.
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Linear complexity

Clustering and community detection is often applied to large datasets.
@ Only near-linear complexity algorithms are feasible.

o If a validation measure has super-linear complexity, it would form a
bottleneck.
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Linear complexity

Clustering and community detection is often applied to large datasets.
@ Only near-linear complexity algorithms are feasible.

o If a validation measure has super-linear complexity, it would form a
bottleneck.

Definition
A measure satisfies the linear complexity property if it can be computed in
linear time.
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Adjustment for chance

Constant baseline is just as important in clustering as in constant baseline.
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@ Many popular measures do not have a constant baseline.

@ A common approach is to define an adjusted-for-chance version:

M(A, B) — Eg/[M(A, B')]
N(A,B) —Eg/[M(A, B')]’

M (A, B) =

where B’ is a random partition with the same sizes as B and N(A, B)
is some normalization of M(A, B).
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Adjustment for chance

Constant baseline is just as important in clustering as in constant baseline.

@ Many popular measures do not have a constant baseline.

@ A common approach is to define an adjusted-for-chance version:

M(A, B) — Eg/[M(A, B')]

M'(A, B) = N(A,B) — Eg/[M(A, B')]’

where B’ is a random partition with the same sizes as B and N(A, B)
is some normalization of M(A, B).
Examples:
e Adjusted Rand (equivalent to Cohen’s Kappa)
o Adjusted Mutual Information:
M(A, B) — Eg/[M(A, B')]

AMIAB) =/ Ha) - HI(B) - Ea (M(A. B)]
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These ‘adjustments’ often lead to new problems:
e AMI has worst-case complexity O(n?).
@ Adjusted Rand also loses several properties compared to Rand.

@ Also, these measures are hard to interpret and analyze.
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Instead of ‘patching’ existing measures, we searched for existing measures
that perform well in terms of our properties.
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These ‘adjustments’ often lead to new problems:
e AMI has worst-case complexity O(n?).
@ Adjusted Rand also loses several properties compared to Rand.
@ Also, these measures are hard to interpret and analyze.

Instead of ‘patching’ existing measures, we searched for existing measures
that perform well in terms of our properties.

e CC (equivalent to Matthew's Correlation Coefficient) satisfies all
properties except for being a distance

@ CD = arccos CC satisfies all properties except for constant baseline
(but including approximate constant baseline).
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Exercises

Consider a clustering Ay s consisting of k clusters of size 2 and one of size
s (i.e,, n=2k+5s).
@ Pick one element from the cluster of size s and assign it to a cluster
of size 1. Let By s be this clustering.
o Let Cy s denote a clustering that splits each of the 2-clusters of Ay s
into two clusters of size 1.
@ For given k, s, calculate the (pair-counting) confusion matrices for
M(Ax s, Bk,s) and M(Ax s, Cks) in terms of n, k,s.
@ For what k(s) does M(Ax s, Bi,s) = M(Ax s, Ck.s) hold? (for any
pair-counting M)
© Calculate the entropies of Ay s, Bis and Cj .
@ For what k(s) does NMI(A s, Bk s) = NMI(Ax s, Ci s) hold?
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Answers
Q@ For M(A, B), we have may = ¢11 + ¢c10 = k + (;), cio=s-—1,
c1=0, c;1=mg =k + (551), and cgp = ('2’) — ma. For M(A, C),
we have c11 = m¢ = (3), cio = k, co1 = 0 and coo = n — ma.
@ We need to match the ¢ig's: k=5 — 1.
Q We get

2 2 2k
H(A):—k-flogf—fbgf=|Og”—*|°g2_£|°gs'
n n n n n n

For B, we only change the s-cluster:

S —

1
I —1).
— log(s — 1)

For C, each of the log 2 terms gets replaced by two two logl =0
terms, i.e., H(C) =logn — 2 logs.

© Note that M(A, B) = M(A, C) = H(A), so that
NMI(A, B) = y/H(A)/H(B). Solving H(B) = H(C) yields

. |0g5+(5_1)|0g(1+s%1) 1+logs
- 2log?2 ~ 2log2 53

2k
H(B) = logn — 7|og2 -




The Projection Method

Hyperspherical geometry of partitions
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Hyperspherical geometry of partitions

Detected communities

Network
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The Diamond percolation algorithm

Partitions G into communities C in two steps:

@ We construct G* by keeping all edges that are part of at least two
triangles

@ Return C as the connected components of G*
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The Diamond percolation algorithm

Partitions G into communities C in two steps:
@ We construct G* by keeping all edges that are part of at least two

triangles
@ Return C as the connected components of G*
///‘\\\ ///‘\ ~
7 ~ 7 ~
// \\ // \\
7/ N\, 7/ N\,
s s >
\\\ ,// \\\
~ // \\
\./ \.
Middle edge kept in G* No edge kept in G* All edges kept in G*

Can prove performance guarantees in terms of the correlation coefficient!
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Example

WA

Original graph G Percolated G* Communities C



Thank you for your attention!
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