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This seminar

Two papers:

MG, A. Zhiyanov, A. Tikhonov, & L. Prokhorenkova. (2021). Good
classification measures and how to find them. Advances in neural
information processing systems (NeurIPS).

MG, A. Tikhonov, & L. Prokhorenkova. (2021). Systematic analysis
of cluster similarity indices: How to validate validation measures. In
International Conference on Machine Learning (ICML).
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The general problem

Need to perform some task

There exist many different algorithms for this task

How to decide which one is best?

Approach: perform benchmarking experiment

Data set . . .

Algorithm k

Algorithm 1 Output 1

. . .

Output k

Ranking
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Performance measures

Compare outputs to desired output or ground truth.

Output 1

. . .

Output k

Performance
measure

. . .

Score 1

Score k

Ranking

Obtaining data with ground truth is a problem of its own, which we will
ignore today.
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Classification and clustering

Validation measures for two common ML tasks:
▶ Classification: assign each object to one of a set of predefined classes.
▶ Clustering: group similar objects together without predefined classes.

Classification yields a labeling, clustering a clustering (partition of the
data points).
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Classification

Input: set of objects with data (features, relations)

Output: a labeling (assignment of each object to one of a set of
predefined classes)

Example applications:
▶ Spam detection
▶ Handwritten digit recognition
▶ Medical diagnosis

Classification algorithms are often trained on some example data with
known labels (ground truth). This is known as supervised learning.

Many methods: neural networks, decision trees, logistic regression. . .

6



Classification

Input: set of objects with data (features, relations)

Output: a labeling (assignment of each object to one of a set of
predefined classes)

Example applications:
▶ Spam detection
▶ Handwritten digit recognition
▶ Medical diagnosis

Classification algorithms are often trained on some example data with
known labels (ground truth). This is known as supervised learning.

Many methods: neural networks, decision trees, logistic regression. . .

6



Classification

Input: set of objects with data (features, relations)

Output: a labeling (assignment of each object to one of a set of
predefined classes)

Example applications:
▶ Spam detection
▶ Handwritten digit recognition
▶ Medical diagnosis

Classification algorithms are often trained on some example data with
known labels (ground truth). This is known as supervised learning.

Many methods: neural networks, decision trees, logistic regression. . .

6



Classification

Input: set of objects with data (features, relations)

Output: a labeling (assignment of each object to one of a set of
predefined classes)

Example applications:
▶ Spam detection
▶ Handwritten digit recognition
▶ Medical diagnosis

Classification algorithms are often trained on some example data with
known labels (ground truth). This is known as supervised learning.

Many methods: neural networks, decision trees, logistic regression. . .

6



Clustering

Definition: partitioning a set of objects into meaningful groups.

(Intentionally vague)

Input: set of objects with data (features, relations)

Output: a clustering (partition of the data set into groups of similar
objects)

Example applications:

▶ Social network analysis
▶ Exploratory data analysis
▶ News aggregation

Clustering is an unsupervised learning problem: no training phase.
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Clustering algorithms
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Clustering vs. Classification: MNIST dataset

A classification algorithm would predict which number is written,

A clustering algorithm would group similar symbols together.

For classification, we need to first define the classes and provide
labeled training data.
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Overview

Lecture 1: Validating Validation Measures for Classification.

Lecture 2: Validating Validation Measures for Clustering.
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Part I: Validating Validation Measures for

Classification
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Rain prediction example

Let A denote the true labeling and let B1,B2 denote two labelings
obtained by different algorithms. We say that two measures M1,M2 are
inconsistent if M1(A,B1) > M1(A,B2) but M2(A,B1) < M2(A,B2) (or the
other way around).
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Confusion matrices

Given labelings A,B of n data points into m classes, we define the
confusion matrix C = (cij)

m−1
i ,j=0 by

cij = |{x | A(x) = i ,B(x) = j}|.

For binary classification:

c11: true positives

c10: false negatives

c01: false positives

c00: true negatives

(but I will try to avoid these terms since I find them confusing)

Also, ai =
∑

j cij , bj =
∑

i cij , n =
∑

i ,j cij .
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Examples of binary classification measures

Accuracy is the fraction of correctly labeled data points:
Acc(A,B) = (c11 + c00)/n.

Recall is the fraction of correctly identified true positives:
Recall(A,B) = c11/a1.

Precision is the fraction of predicted positives that are true:
Precision(A,B) = c11/b1.

The F1 measure is the harmonic mean between recall and precision:

F1(A,B) =
2

a1
c11

+ b1
c11

=
2c11

a1 + b1
.

Matthew’s Correlation Coefficient is the (Pearson) correlation
between the indicators:

CC(A,B) =
nc11 − a1b1√

a1(n − a1)b1(n − b1)
.
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Exercises

Recall

F1(A,B) =
2c11

a1 + b1
, and CC(A,B) =

nc11 − a1b1√
a1(n − a1)b1(n − b1)

.

1 Consider labelings A,B, where B labels all data points to 1 (i.e.,
b1 = n). Express F1(A,B) in terms of n and a1.

2 Define F ′
1 as the arithmetic mean of recall and precision. Compute

F ′
1(A,B) for the same labelings A,B.

3 Can you explain why the harmonic mean rather than the arithmetic
mean is chosen?

4 Consider a fixed labeling A with a1 positives and consider a random
labeling B with b1 positives. Express E[F1(A,B)] in terms of a1, b1, n.

5 Consider the same A,B as above. Compute E[CC(A,B)].

15



Answers

1 F1(A,B) =
2a1
a1+n .

2 F ′
1(A,B) =

1
2 + a1

2n .

3 Harmonic mean penalizes extreme values more than arithmetic mean.
If either recall or precision is low, F1 will be low as well.

4 E[F1(A,B)] = 2a1b1
n(a1+b1)

.

5 E[CC(A,B)] = 0.
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More measures
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F1 vs CC

Makes the argument that F1 only uses 3 out of four confusion matrix
entries, ignoring c00 (true negatives).

Also performs experiments that show that F1 and accuracy can be
misleading, especially with imbalanced data.
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Experiments vs theory

Practical examples and experiments are valuable, but context-dependent.

Instead, we formalize theoretical properties and provide mathematical
proofs or counter-examples for each measure.

Measure Max Min CSym Sym Dist Mon SMon CB ACB
F1 (binary) ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
J (binary) ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
CC ✓ ✓/✗ ✓ ✓ ✗ ✓/✗ ✓/✗ ✓ ✓
Acc ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
BA ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓
κ ✓ ✗ ✓ ✓ ✗ ✓/✗ ✗ ✓ ✓
CE ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

SBA ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
GM (binary) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
CD ✓ ✓/✗ ✓ ✓ ✓ ✓/✗ ✓/✗ ✗ ✓

Properties of validation measures and averagings, ✓/✗ indicates that property is
satisfied only in the binary case.
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Before defining these properties...

Can you come up with desirable properties for validation
measures?

We start with defining some properties that are easy to check.
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Maximum agreement

It’s helpful if we can see from M(A,B), whether A = B.

Definition

A measure M satisfies maximal agreement if there exists a constant cmax

such that for all C, M(C) ≤ cmax with equality iff C is diagonal.

For example,

cmax = 1 for accuracy, F1, CC and κ,

but not Recall = c11
a1

(e.g., b1 = n).
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Minimum agreement

For interpretability, it helps if a measure assigns values to a fixed interval,
i.e., M(A,B) ∈ [cmin, cmax] for all A,B, where both cmin, cmax are
attainable for fixed A.

Definition

A measure M satisfies minimal agreement if there exists a constant cmin

such that for all C, M(C) ≥ cmin with equality iff the diagonal of C is zero,
i.e., cii = 0 for all i .

Acc satisfies this with cmin = 0.

CC satisfies this with cmin = −1.

F1 does not satisfy this.
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Symmetry

Definition

A measure M is symmetric if M(A,B) = M(B,A) (i.e. M(C) = M(C⊤))
holds for all C.

Balanced accuracy BA(A,B) = 1
m

∑m−1
i=0

cii
ai

is not symmetric. Most
others are.

The labelings A,B often take different roles, which may justify
asymmetry. However, it is not straightforward what such asymmetry
should look like.
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Class symmetry

Definition

A measure M is class-symmetric if, for any permutation π of the classes
{1, . . . ,m} and any confusion matrix C, M(C) = M(C̃) holds, where C̃ is
given by c̃ij = cπ(i),π(j).

Class asymmetry can be justified if the classes have different roles.
But again, what should this asymmetry look like?

Most measures are class-symmetric.
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Exercises

(for binary classification)

1 Give a counter-example that shows that F1 does not satisfy minimal
agreement.

2 Let A be a binary labeling and let AC denote its opposite. Calculate
κ(A,AC ).

3 Is F1 class-symmetric?

25



Answers

1 A = [1, 0, 0],B = [0, 1, 0]. Then F1(A,B) = 0 but c00 = 1.

2 We get c11 = c00 = 0 and b1 = n − a1.

κ(A,AC ) =
−2a1(n − a1)

n2 − 2a1(n − a1)
.

3 No, the inverse is 2c00
a0+b0

= 2n−a1−b1+c11
2n−a1−b1

.

26



Distance

Recall that a function d is a distance whenever it is symmetric,
non-negative (with d(A,B) = 0 iff A = B), and satisfies the triangle
inequality

d(A,C ) ≤ d(A,B) + d(B,C ).

Definition

A measure has the distance property if it can be linearly transformed to a
metric distance.

1−Acc is the Hamming distance.

A distance interpretation can be useful for theoretical analysis (e.g.,
deriving performance guarantees).

Difficult to check.
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Exercises

1 Which of the other properties are necessary for the distance property?

Let us represent a binary labeling A as an n-dimensional binary vector, so
that ⟨A,B⟩ = c11. Let 1 denote the all-ones vector.

2 Let Â be the projection of A onto the surface ⟨x , 1⟩ = 0. Calculate Â.

3 Calculate the angle between Â and B̂. Express your answer in terms
of c11, a1, b1, n.

4 Which validation measure do you recognize?
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Answers

1 Symmetry and maximal agreement.

2 Â = A− a1
n 1.

3

∠(Â, B̂) =
⟨Â, B̂⟩√

⟨Â, Â⟩ · ⟨B̂, B̂⟩
=

nc11 − a1b1√
a1(n − a1)b1(n − b1)

.

4 CD (arccos of Matthew’s Correlation Coefficient).
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Monotonicity

Informally, if we change B to agree more with A, then M(A,B) should
increase.

Definition

A measure M is monotone if M(C) < M(C̃) for any confusion matrices C
and C̃ such that C̃ is obtained from C by decrementing an off-diagonal
entry cab and incrementing caa or cbb (and none of the row- or
column-sums of C equal n).

Definition

A measure M is strongly monotone if M(C) < M(C̃) for any confusion
matrices C and C̃ such that C̃ is obtained from C by either increasing a
diagonal entry or decreasing an off-diagonal entry (and none of the row- or
column-sums of C equal n and that C and C̃ are not both diagonal or
zero-diagonal matrices).
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Monotonicity

Tricky to prove, annoying to find counter-examples.

F1 and Jaccard are monotone, but not strongly monotone. (remains
constant when changing c00)

κ sometimes even increases when increasing off-diagonal entries:
κ ( 1 2

1 0 ) < κ ( 1 3
1 0 ).
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Constant baseline

Many measures are biased towards certain types of labelings:

Accuracy is biased towards the majority class.

F1 is biased towards labelings with many positives.

Recall that for fixed A and random B, we have

E[F1(A,B)] =
2a1b1

n(a1 + b1)
,

which is increasing in b1.
Let B ∼ U(b1, . . . , bm) denote a random labeling with sizes b1, . . . , bm.

Definition

A measure M has a constant baseline if there exists cbase(m) that does not
depend on n but may depend on m, such that for any A and non-unary
class sizes b1, . . . , bm, it holds that EB∼U(b1,...,bm)[M(A,B)] = cbase(m).
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Constant baseline

Note that E[cij ] =
aibj
n .

Easy to prove, but difficult to find counter-examples.

CB is particularly important when trying to find the best threshold for
a classifier.

Concretely, rain forecasters optimized for F1 will predict more rain
than rain forecasters optimized for Acc.
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Approximate constant baseline

Definition

M has an approximate constant baseline if there exists a function cbase(m)
that does not depend on n but may depend on m such that for any class
sizes a1, . . . , am and any non-unary b1, . . . , bm, M(C̄) = cbase(m), where

c̄ij =
aibj
n .

Constant baseline implies approximate constant baseline.

CC has a constant baseline, but CD does not (due to the arccos).

CD does have ACB.
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The properties

Measure Max Min CSym Sym Dist Mon SMon CB ACB
F1 (binary) ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗
J (binary) ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✗
CC ✓ ✓/✗ ✓ ✓ ✗ ✓/✗ ✓/✗ ✓ ✓
Acc ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
BA ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓
κ ✓ ✗ ✓ ✓ ✗ ✓/✗ ✗ ✓ ✓
CE ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

SBA ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
GM (binary) ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓
CD ✓ ✓/✗ ✓ ✓ ✓ ✓/✗ ✓/✗ ✗ ✓

Properties of validation measures and averagings, ✓/✗ indicates that property is
satisfied only in the binary case.

Note that there is no measure that satisfies Dist, Mon and CB.
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Impossibility theorem

Theorem

A binary validation measure cannot simultaneously satisfy the distance
property, monotonicity, and constant baseline.

36



Impossibility proof
Let A have a single positive and n − 1 negatives. Let B1 ∼ U(n − 1, 1) and
B2 ∼ U(n − 2, 2). Let d = cmax −M.

CB requires E[M(A,B1)] = E[M(A,B2)], which gives

1

n
cmax +

n − 1

n
M

(
0 1
1 n−2

)
=

2

n
M

(
1 0
1 n−2

)
+

n − 2

n
M

(
0 1
2 n−3

)
⇔ 2M

(
1 0
1 n−2

)
− cmax = (n − 1)M

(
0 1
1 n−2

)
− (n − 2)M

(
0 1
2 n−3

)
. (1)

Consider a labeling C with a single positive that does not coincide with the
positive of A and a labeling B = A+ C (i.e., two positives). Using
d(A,C ) ≤ d(A,B) + d(B,C ):

cmax −M
(
0 1
1 n−2

) Dist
≤ 2cmax −M

(
1 1
0 n−2

)
−M

(
1 0
1 n−2

) Sym
= 2(cmax −M

(
1 0
1 n−2

)
),

This is rewritten to
2M

(
1 0
1 n−2

)
− cmax ≤ M

(
0 1
1 n−2

)
. (2)

Combining (1) and (2), we obtain

(n − 1)M
(
0 1
1 n−2

)
− (n − 2)M

(
0 1
2 n−3

)
≤ M

(
0 1
1 n−2

)
.

We rewrite this to M
(
0 1
1 n−2

)
≤ M

(
0 1
2 n−3

)
, which contradicts monotonicity.
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End of Part I
Questions?

38



Part II: Validating Validation Measures for

Clustering

39



Community detection

40



How to measure performance?

Algorithm 1. Algorithm 2.

Which algorithm was least wrong?
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Clustering vs classification

Clusterings (partitions) have a more complex structure than labelings,
since we don’t care about the identities of the clusters.

A labeling can be used to represent a clustering, but we don’t care
about the ordering of the labels.

We can define a confusion matrices as before, they don’t need to be
square.

But M(C) = M(C′) for any C′ that is obtained by permuting the rows
or columns of C.
Matching-based measures use a (multiclass) classification measure
MM to define M(C) = MM(C∗), where C∗ corresponds to the
mapping between clusters of A and B that maximizes MM(C∗).

We won’t discuss these because they are complicated and don’t have
good properties.
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Pair-counting measures and binary classification

For two clusterings A,B, we can count the number of pairs of data points
that are

in the same cluster in both A and B (c11),

in the same cluster in A but in different clusters in B (c10),

in different clusters in A but in the same cluster in B (c01),

in different clusters in both A and B (c00).

This gives a 2× 2 confusion matrix that can be used with any binary
classification measure.

c11 + c10 + c01 + c00 =
(n
2

)
=: N

c11 + c10 =
∑

i

(ai
2

)
=: mA

The most popular pair-counting measures are

Rand Index (Acc)

Adjusted Rand Index (Cohen’s kappa)
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Information-theoretic measures
We can interpret a clustering as a discrete distribution over the labels
0, . . . ,m − 1 with probability ai/n. The corresponding entropy is

H(A) = −
m−1∑
i=0

ai
n
log

ai
n
,

and

H(A,B) = −
m−1∑
i=0

m−1∑
j=i

cij
n

log
cij
n
.

The mutual information is

M(A,B) = H(A) + H(B)− H(A,B).

This can be normalized (in several ways) to obtain Normalized Mutual
Information (NMI)

NMI (A,B) =
M(A,B)√
H(A) · H(B)

.
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H(A) · H(B)

.
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Does it matter which measure we use?

There are many different measures. Do they differ significantly?

We found four such clustering triplets that fully distinguish the 16
measures we considered.
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Does it really matter which measure we use?

We took 16 benchmark clustering datasets and applied 8 standard
clustering algorithms. We count the fraction of times that two measures
disagree on which of two algorithms is better.
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Properties

M
a
x.

a
g
re
em

en
t

S
ym

m
et
ry

D
is
ta
n
ce

L
in
.
co

m
p
le
xi
ty

M
o
n
o
to
n
ic
it
y

C
o
n
st
.
b
a
se
lin

e

NMI ✓ ✓ ✗ ✓ ✓ ✗
NMImax ✓ ✓ ✓ ✓ ✗ ✗

FNMI ✓ ✗ ✗ ✓ ✗ ✗
VI ✓ ✓ ✓ ✓ ✓ ✗

SMI ✗ ✓ ✗ ✗ ✗ ✓
FMeasure ✓ ✓ ✗ ✓ ✗ ✗
BCubed ✓ ✓ ✗ ✓ ✓ ✗

AMI ✓ ✓ ✗ ✗ ✓ ✓

Properties for general measures.
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A
p
x.

C
B

R ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗
AR ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓
J ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗

W ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗
D ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗

CC ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
S&S ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓
CD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Properties for pair-counting measures.

Some properties can only be defined for pair-counting measures (e.g.,
minimal agreement, approximate constant baseline).
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Monotonicity

Monotonicity is more complicated for clusterings.
Let Ai denote the ith cluster of clustering A.

Perfect merge: If A1,A2 ⊂ Bi , then merging A1,A2 should increase
the measure.

Perfect split: If A1 ∩ Bi ̸= ∅ but A1 ̸⊂ Bi , then splitting A1 into
A1 ∩ Bi and A1 \ Bi should increase the measure.

For any A,B, we can obtain B from A by a sequence of perfect splits and
merges.
If a binary classification measure is monotone, then the corresponding
pair-counting clustering measure is also monotone w.r.t. perfect splits and
merges.
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Linear complexity

Clustering and community detection is often applied to large datasets.

Only near-linear complexity algorithms are feasible.

If a validation measure has super-linear complexity, it would form a
bottleneck.

Definition

A measure satisfies the linear complexity property if it can be computed in
linear time.
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Adjustment for chance

Constant baseline is just as important in clustering as in constant baseline.

Many popular measures do not have a constant baseline.

A common approach is to define an adjusted-for-chance version:

M ′(A,B) =
M(A,B)− EB′ [M(A,B ′)]

N(A,B)− EB′ [M(A,B ′)]
,

where B ′ is a random partition with the same sizes as B and N(A,B)
is some normalization of M(A,B).

Examples:

Adjusted Rand (equivalent to Cohen’s Kappa)

Adjusted Mutual Information:

AMI (A,B) =
M(A,B)− EB′ [M(A,B ′)]√
H(A) · H(B)− EB′ [M(A,B ′)]

.
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These ‘adjustments’ often lead to new problems:

AMI has worst-case complexity O(n2).

Adjusted Rand also loses several properties compared to Rand.

Also, these measures are hard to interpret and analyze.

Instead of ‘patching’ existing measures, we searched for existing measures
that perform well in terms of our properties.

CC (equivalent to Matthew’s Correlation Coefficient) satisfies all
properties except for being a distance

CD = arccosCC satisfies all properties except for constant baseline
(but including approximate constant baseline).
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Exercises

Consider a clustering Ak,s consisting of k clusters of size 2 and one of size
s (i.e., n = 2k + s).

Pick one element from the cluster of size s and assign it to a cluster
of size 1. Let Bk,s be this clustering.

Let Ck,s denote a clustering that splits each of the 2-clusters of Ak,s

into two clusters of size 1.

1 For given k, s, calculate the (pair-counting) confusion matrices for
M(Ak,s ,Bk,s) and M(Ak,s ,Ck,s) in terms of n, k , s.

2 For what k(s) does M(Ak,s ,Bk,s) = M(Ak,s ,Ck,s) hold? (for any
pair-counting M)

3 Calculate the entropies of Ak,s ,Bk,s and Ck,s .

4 For what k(s) does NMI(Ak,s ,Bk,s) = NMI(Ak,s ,Ck,s) hold?
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Answers
1 For M(A,B), we have mA = c11 + c10 = k +

(s
2

)
, c10 = s − 1,

c01 = 0, c11 = mB = k +
(s−1

2

)
, and c00 =

(n
2

)
−mA. For M(A,C ),

we have c11 = mC =
(s
2

)
, c10 = k , c01 = 0 and c00 = n −mA.

2 We need to match the c10’s: k = s − 1.
3 We get

H(A) = −k · 2
n
log

2

n
− s

n
log

s

n
= log n − 2k

n
log 2− s

n
log s.

For B, we only change the s-cluster:

H(B) = log n − 2k

n
log 2− s − 1

n
log(s − 1).

For C , each of the log 2 terms gets replaced by two two log 1 = 0
terms, i.e., H(C ) = log n − s

n log s.
4 Note that M(A,B) = M(A,C ) = H(A), so that

NMI(A,B) =
√

H(A)/H(B). Solving H(B) = H(C ) yields

k =
log s + (s − 1) log

(
1 + 1

s−1

)
2 log 2

≈ 1 + log s

2 log 2
.
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The Projection Method
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The Projection Method
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The Projection Method
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The Diamond percolation algorithm

Partitions G into communities C in two steps:

1 We construct G ∗ by keeping all edges that are part of at least two
triangles

2 Return C as the connected components of G ∗

Middle edge kept in G∗ No edge kept in G∗ All edges kept in G∗

Can prove performance guarantees in terms of the correlation coefficient!
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Example

Original graph G

→

Percolated G∗

→

Communities C



Thank you for your attention!

61


	References

